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Abstract—Recent years have seen a proliferation of intelli-
gent (automated) decision support systems for various smart
city applications such as energy management, transportation,
healthcare, environment monitoring, and so on. A key enabler
in the smart city paradigm is the Internet-of-Things (IoT)
network of smart sensing and actuation devices assisting in
real-time detection and monitoring of physical phenomena. The
underlying IoT network must be energy-efficient for application
sustainability and also quality of information (QoI)-aware for
near-perfect device actuation. To this end, this paper proposes
bioSmartSense, a novel bio-inspired distributed event sensing and
data collection framework, based on the gene regulatory networks
(GRNs) in living organisms. The idea is to make the sensing and
reporting tasks energy-efficient through self-modulation of IoT
device energy levels, analogous to the activation or repression
of genes by the regulating proteins, called Transcription Factors
(TFs). To support energy-efficient and QoI-aware information
dissemination, we first customize a heuristic designed for the
Maximum Weighted Independent Set problem encompassing both
‘quality’ and ‘quantity’ of sensed data, where the former depends
on the device energy levels while the latter on the number of
events sensed. We utilize the heuristic to propose a sub-optimal
device selection mechanism constrained on the IoT network’s
overall residual energy. Simulation experiments demonstrate that
the bioSmartSense framework achieves better energy-efficiency
while maximizing event reporting compared to a state-of-the-art
data collection approach for smart city applications.

Index Terms—Gene Regulatory Networks, Energy-efficiency,
Smart city applications, Quality of Information

I. INTRODUCTION

Urban population has undergone unprecedented growth over
the last two decades. A recent survey1 by the United Nations
shows that 54% of the world’s population live in urban areas,
which is expected to increase to 66% by 2050. While only
2% of the world’s surface is occupied by urban environments,
the cities contribute to 80% of global gas emission, 75%
of global energy consumption and 60% of residential water
usage [1]. Thus, it is imperative to design efficient and smart
solutions for various public services in urban areas, such as

* Co-primary authors
1http://www.un.org/en/development/desa/news/population/world-

urbanization-prospects-2014.html

energy management, transportation, healthcare, environment
monitoring, and so on. The objective is to provide support
for intelligent decision making to improve quality of life and
make our environment and hence the society more sustainable.

Among other things, smart cities rely on the information and
communication technology (ICT) solutions to deliver services
to the citizens [2]. Internet-of-Things (IoT) is envisioned
as a candidate building block to develop sustainable ICT
platforms [1]. An IoT network comprises smart devices with
sensing, communication, computing, actuation, and storage
capabilities that can communicate with other devices and users
via smartphones and wearables, as well as through applica-
tion platforms to enable ubiquitous computing environments.
Unlike a traditional wireless sensor node, an IoT device is
typically more powerful in terms of its capabilities. Also, it
does not act as intermediate routing node to deliver messages
to the application platform, but leverages the wireless commu-
nication and backbone network for data transfer.

Energy-efficient smart city solutions require the IoT devices
to operate without compromising the quality of sensing, pro-
cessing, and transferring the collected data [3], implying that
the lifetime of IoT devices are critical. Often the devices may
be deployed at locations remote to the application platform
and their limited energy gets dissipated while sensing the
environment and communicating the sampled data via wire-
less communication technologies, such as 3G/4G/LTE, WiFi,
ZigBee, or Bluetooth/BLE [4]. Furthermore, it may not always
be feasible to replenish their batteries nor replace them with
fully-charged devices on-the-fly.

A possible way to achieve energy-efficiency is to use the
available (or residual) energy judiciously, i.e., either refrain
from unnecessary sensing and reporting operations, or sched-
ule the devices such that the tasks are conducted intermittently
(both periodic and event-driven sensing). For both methods,
any drop in the frequency or intensity of collecting data
samples results in inaccurate sensing which, in turn, directly
affects the quality of information (QoI) [5], [6]. Thus, the
actuation which the application platform triggers based on
the information received infrequently or intermittently, will be
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erroneous and unproductive to the end users. Therefore, it is
critical to design efficient data collection frameworks for IoT-
based smart city applications [7] that incorporate both sensing
and transferring/reporting of data samples. This serves as the
motivation for our work.

A challenge in designing such frameworks is to minimize
the cost of energy dissipation for sensing and reporting, by es-
timating the residual energy of the devices, yet simultaneously
guaranteeing satisfactory quality of the contributed informa-
tion to ensure the application’s operational reliability. Realiz-
ing that IoT-based smart city applications will benefit from
energy-efficient and QoI-aware data collection frameworks
for sustainable delivery of public services, this paper pro-
poses a novel bio-inspired data collection framework, called
bioSmartSense, by exploiting the concept of gene regulatory
networks (GRN) in living organisms. A GRN is a network
of interactions between the DNA segments, called genes,
regulating the concentration of protein synthesis in living cells.
GRNs of unicellular organisms like E. coli and Yeast have been
widely studied due to their biological robustness, which is a
consequence of the underlying topological or graph properties
(for details, refer to Section III).

The literature on robust, energy-efficient topology design
includes works that attempt to utilize GRNs in wireless sensor
networks (WSNs). Nazi et al. [8], [9] leveraged GRN topol-
ogy to design efficient WSN topology by establishing a one-
to-one mapping between the nodes in these two graphs. Roy
et al. [10] introduced an edge rewiring mechanism to enhance
GRN topology against random node failures. The bio-inspired
WSNs exhibit high packet delivery rate and low network
latency compared to Erdos-Renyi (ER) random topology and
k-connected network topology. Markham et al. [11] proposed
a GRN-based approach to configure WSNs in a target tracking
application. Byun et al. [12] proposed a GRN-based self-
organizing control of WSNs in order to guarantee energy-
efficiency and communication latency. However, no existing
work has yet exploited the regulatory information of GRNs to
study energy-efficiency of resource-constrained networks.

Our choice of a biological network like GRN as the under-
lying principle of designing energy-efficient data collection
framework in an IoT network of sensing devices is motivated
by their functional similarity. Sensing devices can operate in
different power (energy) states, such as idle, sleep, active,
and off which determine its rate of power consumption [13].
Indeed, an IoT device adjusts to a power level following an
event trigger, and starts to operate at a given degree of intensity
specific to that power level. Analogously, the genes in a GRN
function at different expression levels to synthesize proteins
of variable quantities and concentration in order to meet
dynamic cellular requirements and support sustainability of the
living organism [14] [15]. The expression levels of a specific
gene are controlled by itself as well as by other regulating
(neighboring) genes. We intuit that if a sensing device in
IoT network is capable of regulating its energy levels as well
as that of its neighbors, then smart city applications will be
more sustainable. The objective of proposed data collection

framework, bioSmartSense, is to validate this very intuition.
To support both energy-efficiency and QoI requirements of

our framework, we need to design a schedule that selects
an optimal subset of devices to carry out sensing tasks and
reporting at different times. To this end, we formulate an
optimization problem, prove its NP-completeness, and derive
a sub-optimal solution by customizing a heuristic for the
Maximum Weighted Independent Set (MWIS) problem. To the
best of our knowledge, this is the first work leveraging a
biological network to design energy-efficient and QoI-aware
data collection framework for smart city applications. Below
we highlight the major contributions of the work.

1) A novel GRN-based data collection framework, bioS-
martSense, is presented to facilitate energy-efficient and
QoI-aware data sensing and reporting for sustainable
IoT-based smart city applications.

2) Energy regulation of IoT devices is modeled exploiting
self and neighbor regulation mechanisms in GRNs.

3) An optimization problem is formulated to select a subset
of IoT devices for sensing and reporting tasks, by
satisfying energy-efficiency and QoI requirements.

4) After proving NP-completeness of the optimization
problem, a sub-optimal algorithm is proposed by cus-
tomizing a heuristic for the Maximum Weighted Inde-
pendent Set (MWIS) problem.

5) Performance evaluation through extensive simulation
studies demonstrates the efficacy of the bioSmartSense
framework and its superiority, in terms of energy-
efficiency and event reporting capability, as compared
with those of a state-of-the-art data collection approach
for smart city applications.

The rest of the paper is organized as follows. Section
II discusses the system model while Section III introduces
GRNs and different types of regulations. Section IV describes
in details the bioSmartSense framework. Section V presents
the device selection mechanism and Section VI discusses the
simulation results and compares the performance of proposed
data collection framework. Section VII draws conclusions and
identifies future work.

II. SYSTEM MODEL

Fig. 1 depicts the system model that captures one of multiple
sensing regions formed by partitioning an urban area. To
realize the smart city setting, let us consider a set of IoT
devices, D = {d1, d2, d3, · · · } deployed over a region to sense
the environment (e.g., vehicular traffic volume) and reporting
the data to a remote application platform, termed as the base
station. At deployment time, all devices are assumed to have
the same initial energy, ε.

Let us now introduce the concept of time epoch, t, to
delineate different processes taking place in each cycle of
the application. It is a configurable parameter, whose duration
depends on the frequency of data sample collected by the
base station. Specifically, the time epoch is defined as a fixed
temporal window t = tr + ts + tb + ttx, divided into the
following four phases: (i) Device energy regulation (tr): IoT
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Fig. 1: System Model

devices exchange regulation information among themselves
and modulate energy levels to perform sensing and reporting;
(ii) Event sensing (ts): Devices sense events occurred in
the vicinity; (iii) Device-base station beacon exchange (tb):
Devices send beacon messages to the base station informing
the events they sensed along with their individual energy
levels. The base station chooses a subset of these devices and
informs them to initiate reporting of the sensed information;
and (iv) Information transmission (ttx): Each selected device
processes and aggregates the samples collected during the
sensing phase and transfers it as event information (reporting).

Three important components of this model are as follows:
1. IoT device: An IoT device di ∈ D is a rechargeable
battery-powered node with sensing, processing, storing, and
reporting capabilities. It is placed in the sensing region to
collect information about its vicinity (e.g., data related to
traffic density). Each device di senses events in its sensing
boundary defined by a fixed radius, rd. The information is
conditionally transmitted to the base station using WiFi, Blue-
tooth low energy (BLE) or ZigBee communication protocols
depending on the device specifications. For sake of simplicity,
we assume that the sensing region consists of only WiFi
devices. All devices are equipped with GRN-based energy-
level modulation, which enables them to control the intensity
of operations, viz., sensing, reporting, and data processing. At
any point, the device energy level belongs to the interval [0,
1]. Our system model supports two types of regulations:
a. Neighbor regulation: In this regulation, each sensor device
sends regulatory messages to its successors and receives
the same from its predecessors during every device energy
regulation phase of the time epoch (details in Section IV-B).
b. Self regulation: Each device has a predefined lower and
upper limits on its energy level. If the mean energy level
drops below the lower limit, or exceeds the upper one, then it
resets to 0.5. This action also takes place in the device energy
regulation phase.
2. Event: Let a set of E = {e1, e2, e3, · · · } events occur
within the sensing region at a particular time epoch. Any
event ek ∈ E (denoted by red dot in Fig. 1) is an alert
which gets triggered at a location within the sensing region, if
one or more device(s) sense(s) an anomalous deviation from
a predefined normal condition (w.r.t. the traffic volume in

our application). Each event is associated with a geographical
location information and a quantitative metric, objectively
measured by the IoT device. If multiple event alerts are
generated at approximately the same location and during the
same time epoch, we consider them to be the same event.
3. Base Station: A base station is the application platform
which is remotely located from the sensing regions (refer Fig.
1). Its communication range (rB) is much higher compared to
that of IoT devices, and it uses a plethora of communication
protocols and the backbone Wireless LAN network for bidirec-
tional message exchange with the devices. The base station is
responsible for making decisions regarding the selection of IoT
devices to perform sensing and reporting tasks at different time
epochs, such that the energy-efficiency and QoI requirements
of the application are satisfied.

As explained above, Fig. 1 shows that a device has a fixed
sensing boundary within which multiple events of interest may
take place during a particular time epoch. The device can
report all or a subset of events depending on its available
residual energy. Following [16], we also assume that at a
higher energy level, a device can generate data at a higher
sampling rate, thus resulting in more accurate measurements.
However, acceptance of a device’s contribution by the base
station at the current time epoch will depend on the number
of events sensed (‘quantity’ of data) and the expected QoI
index (refer to Section V) of data samples collected for the
sensed events (‘quality’ of data).

III. GENE REGULATORY NETWORKS

The GRN topology represents interactions between genes
and proteins, called Transcription Factors (TFs) or messenger
RNAs (mRNAs). Let Gg(Vg, Eg) denote a GRN graph, where
the vertex-set Vg represents the genes, proteins, mRNAs;
and the edge-set Eg represents the interactions corresponding
to molecular reactions or processes. In practice, Gg(Vg, Eg)
is a directed, weighted graph. Fig. 2a shows the topol-
ogy of E. coli GRN obtained from a software tool, called
GeneNetWeaver [17].

(a) Topology of E. coli
(b) Feed Forward
Loop Motif

Fig. 2: GRN: Topology and FFL Motif

The GRN topology has a very low graph density of 0.0015
on a scale of 0 to 1, where 0 corresponds to an empty
graph and 1 corresponds to a complete graph. Despite its
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sparseness, the clustering coefficient2 of GRN is over 80 times
that of Erdos-Renyi (ER) random graphs [18] 3 of the same
graph density, by virtue of the presence of acyclic triangular
subgraphs, called Feed Forward Loop (FFLs) motifs [19] (Fig.
2b). Experiments show that the abundance of FFL motif makes
the GRN topologically robust as compared to ER random
graphs of same graph density [19]. We characterize topological
robustness by the ability of a network to stay connected despite
node failures [19]. The interactions between the GRN nodes
(i.e. the edge weights) can be categorized into three classes:
Activation: Increase in the protein concentration of the regu-
lating entity can lead to an increase of the same in the target
entity. It is represented by + sign.
Repression: Decrease in the concentration of the regulating
entity can lead to the decreased concentration of the target
entity. It is represented by − sign.
Dual: Regulator can activate or inhibit the target node. It is
represented by +− sign. Additionally, GRN nodes are also
capable of self-regulation. Due to this property, a single gene
may activate or repress its own activity. A self-regulating gene
is a very common phenomenon in E. coli GRN, where 40%
of TFs negatively regulate themselves [20].

IV. PROPOSED BIOSMARTSENSE FRAMEWORK

In this section, we present the different functional compo-
nents of our proposed framework, bioSmartSense.

A. Mapping IoTNet to GRN Topology
As hinted in Section III, the inherent robustness, fault-

tolerance and self-regulation in GRN topology makes it an
ideal choice for designing energy-efficient data collection
framework. First, we map the network of IoT devices, abbre-
viated IoTNet, into a corresponding GRN topology. We adopt
the mapping algorithm proposed by one of our coauthors in
et al. [8] [9], which takes the topology of IoTNet as input
and generates a corresponding subgraph that preserve the
topological robustness of GRNs. The mapping algorithm in
our context is described as follows.

Let the IoTNet be represented as Gw(Vw, Ew), where Vw =
d1, d2, ..., dm represents the set of IoT devices and an edge
{di, dj} ∈ Ew exists if two devices di and dj are within
the (wireless) transmission range of one another. Thus, Vw is
equivalent to the device-set D defined in Section II. We utilize
the page rank-based mapping algorithm [9] to form a GRN
overlay network over Gw, by establishing a correspondence
between the topology of GRNs and Gw. It introduces the
mapping function M : Gmw → Gg such that Gmw(Vmw, Emw)
is a directed mapped IoTNet topology, where Vmw ⊂ Vw and
Emw ⊂ Ew. An edge {di, dj} ∈ Emw exists if and only if
there exists a path between M(di) and M(dj) in Gg . The
time complexity of the algorithm is O(m2), where m is the
number of sensing devices in IoTNet.

2Clustering coefficient of a graph is a measure of the degree to which nodes
in a graph tend to cluster together.

3The Erdös-Rényi (ER) random graph is constructed by initializing a set
of isolated nodes and introducing a directed edge between each distinct pair
of nodes with probability p.

An Illustrative Example: As shown in Figs. 3a and 3b,
the list of genes and IoT device labels are annotated by their
respective normalized rank scores. The mapping algorithm
processes the list of highest ranked genes and IoT devices,
and maps device 1 into gene c. Since 0 is the next highest
ranked device having an edge with mapped device 1 is 0, it
gets mapped to the next highest ranked gene g (neighbor of
gene c). Similarly, device 2 is mapped to gene b. The next
highest ranking device 4 shares edges with mapped devices 0
and 1. It is mapped to gene e which has paths to corresponding
mapped genes g and c. Note that the communication links
inherit the direction of data forwarding from the direction of
interactions between corresponding genes in the input GRN
topology, resulting in a directed graph mapped-IoTNet. Finally,
the last IoT device 3 is mapped to gene a, because the latter
interacts directly with b. The mapped-IoTNet graph is shown
in Fig. 3c.

Fig. 3: Working of the Mapping Algorithm

In the next section, we describe the different regulation
techniques that have been used to modulate the energy levels
of the devices in mapped-IoTNet.

B. GRN-based Energy Regulation

For a directed edge {di, dj} ∈ Emw, di is the predecessor
of dj while dj is the successor of di. The list of predecessors
and successors of a node di ∈ Vmw is denoted as φ(di) and
η(di), respectively. We consider two kinds of regulations:
Neighbor regulation: Each IoT device di sends regulatory
messages to devices in η(di) and receives regulatory messages
〈senderID, sender energy level, regulation type,
current time〉 from devices in φ(di) during every regulation
phase of the time epoch, t. For each device di with energy
level ltdi at time instance t, its energy level at time t+ 1 is:

lt+1
di

=
∑

v∈φ(di)

κ×W(dj , di)× ltdi (1)

where W is a function that defines the nature of interactions
among communicating devices, i.e., W : W(dj , di) →
{+,−},∀{dj , di} ∈ Gmw, and κ is the rate constant which
determines the degree of positive or negative regulation of a
node by its predecessors.
Self regulation: This regulation technique is used by a device
di to regulate its own energy level. Given two residual energy
limits L and U (0 ≤ L < U ≤ 1.0), if the mean energy
level of the device di, 1

rI

∑
t l
t
di

, drops below L or exceeds U
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during the regulation phase of duration rI , ltdi is re-initialized
to energy level any baseline. In our experiments, we consider
a baseline of 0.5.

C. Sub-optimal Selection of Sensing Devices

For real-time sensing-based applications, frequent replenish-
ment of the battery of the sensing devices or replacement of
inactive devices on-the-fly is often infeasible. Evidently, there
is a significant constraint on the IoT network energy, and at
any point of time it is roughly capped by the sum of residual
energies of individual devices. Thus, efficient utilization of
energy is paramount to maintain a fully operational network
for longer periods of time. In general, the duration for which
a system maintains the desired level of network performance
and QoS, is denoted by network lifetime.

Likewise in our IoT-based smart city application, we gauge
the network lifetime as the time until which it is able to
disseminate event related data (occurring within a sensing
region) with significant quantity (count) and quality (accu-
racy). Longer network lifetime will enable the base station
(application platform) to support uninterrupted services with-
out recharging the devices for an extended period of time.
Thus, a smart city application ideally needs to maximize both
quality and quantity of event information at every time epoch,
given that the base station is constrained by overall residual
energy of the IoTNet.

For a set of events E = {e1, e2, · · · , en}, a set of devices
D = {d1, d2, · · · , dm} and an overall residual energy budget
Et =

∑m
i=1 ε

t
di

at time epoch t, where εtdi is the residual
energy for device di, the task of bioSmartSense is to select
an optimal set of devices whose reports (data samples) are to
be accepted by the base station and used in the application
for providing services. The selection mechanism will avoid
receiving reports from all devices that have generated reports
for the same event. Instead, it will make an optimal decision
on selecting the best device, say db, based on the following
two criteria:
(i) Quality: The self-regulated energy level of db is on the
higher side to ensure superior QoI index (defined in Section
V) of the data collected.
(ii) Quantity: Device db has sensed maximum events in its
vicinity during the given time epoch to guarantee reporting of
higher number of events.

We term this as the problem of Device Selection for Quality
and Uninterrupted Information Dissemination (DSQUID). It is
formally defined as follows:

Definition 1: (DSQUID). It is the problem of selecting non-
redundant event information from a set of devices, such that
both the quality and quantity of the disseminated information
are maximized, subject to constraint on the overall network
residual energy budget.

1) NP-Completeness of DSQUID: As mentioned above, E
is the set of events whose information will be used in the
present time epoch. Let D be a collection of device contribu-
tions D1,D2, · · · ,Dm, where Di comprises the events sensed
by device di in the present time epoch.

Without loss of generality, we can simplify the DSQUID
problem by assuming D∗ ⊆ D such that (i) each event in E
is contained in at most one subset in D∗, and (ii) each event
in E is contained in at least one subset in D∗. Condition (i)
ascertains that no two devices who have sensed the same event
are selected; while condition (ii) ensures that information for
all events sensed in the current time epoch are reported. Thus,
the problem reduces to finding D∗.

If conditions (i) and (ii) are not considered, the simplest way
to solve this problem is to first select one device contribution
from D arbitrarily (there are total m devices and assuming
each device has contributed, |D| = m), then select another
device contribution from the rest of D, and so on, until the
selected set D∗ satisfies D∗ = E. However, if the above
mentioned conditions are imposed, the question becomes hard
and cannot be solved deterministically.

Conversely, given a set of device contributions D∗ as
a certificate, we can quickly check to determine whether
D∗ = E or not. This verification of the certificate can be done
in polynomial time. Hence, DSQUID is in the NP class.

There exists no polynomial time solution to find the set
of device contributions that exactly cover the set of events.
In essence, the DSQUID problem is NP-complete. To prove
this, we reduce a classic NP-complete problem, known as the
Exact Cover [21], to the DSQUID problem.

Definition 2: (Exact Cover Problem). Given a collection S
of subsets of a set X , an exact cover of X is a sub-collection
S∗ of S that satisfies two conditions:

• The intersection of any two distinct subsets in S∗ is
empty, i.e., the subsets in S∗ are pairwise disjoint. Thus,
if Si,Sj ∈ S∗, then Si ∩ Sj = ∅.

• The union of the subsets in S∗ is X , i.e., the subsets in
S∗ cover X . Thus, ∀Si ∈ S∗,

⋃
i Si = X .

We do the following construction. Let each xi ∈ X corre-
sponds to an event ei ∈ E. Then S = {S1,S2, ...,Sm} maps
to D = {D1,D2, ...,Dm}, such that Si corresponds to Di. The
mapping can be shown in polynomial time. Thus, the set D∗
discussed earlier now corresponds S∗. Hence, if we can find
D∗ in polynomial time, we can also solve the Exact Cover
problem in polynomial time. As the DSQUID problem is NP-
complete, at best we can find a sub-optimal solution.

2) Heuristic to Solve DSQUID Problem: The heuristic for
finding a sub-optimal solution for the DSQUID problem
is motivated by the approximation algorithm [22] proposed
for the Maximum Weighted Independent Set (MWIS) problem
which has been used for efficient determination of a maximal
weighted independent set in the topology graph of a wireless
network [23].

Let G = (V,A, ω) be a simple weighted undirected graph,
where V is the set of vertices, A is the set of arcs (directed
edges), and ω is the vertex weighting function such that ω :
V 7→ R+, ω(u) ∈ R+ for all u ∈ V , ω(S) =

∑
u∈S ω(u) for

any nonempty set S ⊆ V and the set of positive reals R+.
A subset I ⊆ V is an independent set of G if for any two
vertices u, v ∈ I , {u, v} /∈ A. An independent set I of G
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is maximum if there is no independent set I ′ of G such that
ω(I) < ω(I ′).

In the DSQUID problem, our objective is to choose a
minimal set of devices which has collected better quality
information (QoI) for maximum number of events, provided
that the data is not collected from two devices which have
sensed the same event. Such choice enables dissemination of
information of nearly all events occurred in the current time
epoch with higher degree of accuracy, subject to the constraint
that the energy dissipated does not exceed an overall residual
energy budget. The weighing (fitness) function for device
selection needs to incorporate both quantity (i.e. sensing of
different events) and quality (i.e. accuracy in generated report)
of contribution.

For the MWIS problem, Sakai et al. [22] proposed a
generalized weighted greedy algorithm, called GWMAX .
It is an extension of the existing GMAX algorithm that
selects a vertex of maximum degree, removes it and its
neighbors from the graph, and iterates this process on the
remaining graph until no vertex is remaining, implying the
set of selected vertices is an independent set. GWMAX has
an approximation ratio of at least 1

∆ , where ∆ denotes the
maximum degree of the given graph G(V,A, ω). It generalizes
the vertex selection rule as:

Select each vi (0 ≤ i ≤ |I| − 1) that satisfies∑
u∈NGi

(vi)

ω(u)

deg(u)(deg(u) + 1)
≥ ω(vi)

deg(vi) + 1
(2)

where, NGi
(vi) is the set of vertices adjacent to vi in the

subgraph Gi and deg(vi) is the degree of vertex vi. This
implies that the vertex weight normalized by its degree plus
1 forms the selection criteria for all the vertices, and the one
which has maximum normalized weight gets selected.

In the beginning of the GWMAX algorithm, a set I is
initialized to be an empty set, and the weight of each node in
G is evaluated with Eqn. (2). Then, the GWMAX iteratively
selects a node vi using maximum value in G and adds vi to I ,
until no node can be selected. In each iteration, when a node vi
with maximum value in G is selected, G is updated as a sub-
graph of Gi induced by V −NGi

(vi). In addition, reevaluation
of the weights in the current subgraph is carried out using
Eqn. (2). We will use a variant of the GWMAX heuristic as
the device selection criteria in the DSQUID problem.

V. DSQUID ALGORITHM

Given an instance of the DSQUID problem at a particular
time epoch containing a set of events E = {e1, e2, ..., en},
a set of devices D = {d1, d2, ..., dm}, and a residual energy
budget Et at time epoch t, our objective is to map this instance
to an instance of MWIS problem. Such mapping to the
MWIS problem will generate an undirected weighted graph
G(D,A, ω′), where the vertex set is given by the set of devices
(i.e., D), ω′ is the vertex weighing function (defined later),
and the edge set A will have an edge (di, dj) if and only if
devices di and dj have sensed and generated reports for one

or more common events. The physical significance of such
graphical model is to capture events which have occurred in
the overlapped portions of the devices’ sensing boundaries,
and to choose the optimal reporting device. Thus, if k is the
degree of any node (device) in G(D,A, ω′), it means that the
event(s) reported by this node (device) has also been reported
by k other devices.

Fig. 4 depicts the graphical representation of our system
model (refer to Fig. 1) which forms one of the instances of
the DSQUID problem captured at a given time epoch.

Fig. 4: Graphical Transformation of the DSQUID Problem

The vertex weighing function ω′ should take into account
the number of events (quantity) sensed by device di, as well as
the expected QoI index (quality) of the data samples collected.
As mentioned earlier, the quality of data samples collected
at any time epoch depends on the device’s time-varying
self or neighbor-regulated energy level ltdi , which lies in the
interval [0, 1]. It also gives a measure of expected accuracy
of the data generated by the device. Thus, we customize the
weighing function in the DSQUID problem and model it as
a weighted regression, where the number of events sensed and
the expected QoI index of the collected data samples are the
explanatory variables:

ω′(di) = γ · ntdi + (1− γ) · qtdi (3)

where, ntdi and qtdi are the number of events sensed and the
expected QoI index of the data collected by device di at
time epoch t, respectively, and 0 ≤ γ ≤ 1 is the preference
factor which the base station assigns to the two variables.
Such preferences are controlled by contextual information,
such as the location, temporal biases, and so on. For example,
if the event occurrence is frequent within the sensing region,
a higher weight can be given to the number of events sensed
(quantity). For regions with lower event occurrence rate, higher
importance will be given to the QoI index (i.e., quality).

The expected QoI index of data collected by a device
explicitly depends on its current energy level. We use the
following non-linear relationship [16]:

qtdi = α · (ltdi)
β (4)

where, 0 < α < 1 is the highest QoI index that can be achieved
if the device operates at maximum energy level of 1, and 0 <
β < 1 is the discounting factor. Both α and β are contextual
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parameters and vary with application as well as the spatial and
temporal aspects of the sensing environment.

Fig. 5 shows the growth of the QoI index for different values
of the parameters α and β. Evidently, for lower α and higher
β, the QoI index is very low even for maximum energy level.
In contrast, it undergoes a rapid growth for higher α and lower
β, while it grows at moderate rate if both the parameters have
comparable values. Fine tuning these parameters enables the
application platform achieve varying levels of QoI and adapt to
the spatio-temporal contextual requirements of the application.

Fig. 5: QoI Index: Parameters

As mentioned earlier, the objective of the DSQUID algo-
rithm is to maximize the dissemination of event information,
subject to constraint on the residual energy budget. Such
objective is expected to remain valid for all time epochs. Thus,
we need to select a set of devices D∗ ⊂ D that maximizes
the sum of the weights given by Eqn. (3) in an iterative
fashion, provided that the total energy dissipated for transfer
of information is under the overall residual energy. In every
time epoch, a selected device di ∈ D∗ will dissipate a fraction
of its individual residual energy to sense the events and then
transfer information to the base station. Let εtdi is the energy
dissipated by the device di at time epoch t for transmission of
information. Therefore, energy dissipated by device di at the
end of time epoch t is given as follows:

εtdi∈D∗ = ltdi∈D∗ · (δ1 + ntdi∈D∗ · δ2) + δ3 (5)

where δ1 is a constant which combines the energy dissipated
during the device in the idle mode and that during sensing the
environment at a particular time epoch, δ2 is a constant energy
required to transmit information per event, and δ3 is the fixed
energy dissipated to activate the transmitter radio.

The residual energy of device di ∈ D∗ for the next time
epoch is given as:

εt+1
di∈D∗ = εtdi∈D∗ − εtdi∈D∗ (6)

The rest of the devices, which belong to the set D \ D∗,
neither activate their transmitter radio nor transmit any event
specific information to the base station. Thus, for any device
dj ∈ D \D∗, the total dissipated energy will only constitute
the energy spent for the sensing task and is given as follows:

εtdj∈D\D∗ = ltdj∈D\D∗ · δ1 (7)

Similar to Eqn.(6), the residual energy for the devices not
selected for information transfer at the current time epoch is
as follows:

εt+1
dj∈D\D∗ = εtdj∈D\D∗ − εtdj∈D\D∗ (8)

Thus, if T is the total number of time epochs during
which the smart city application can provide service, then the
DSQUID algorithm utilizing the GWMAX heuristic, finds
a solution to the following optimization problem:

maximize
|D∗|∑
i=1

ω′(di)

subject to
|D∗|∑
i=1

εtdi∈D∗ +

|D\D∗|∑
j=1

εtdj∈D\D∗ ≤ Et,∀t ∈ T

(9)
Essentially, the DSQUID algorithm makes a schedule for

selecting IoT devices to avoid processing of redundant event
information in smart city applications, such that the number of
devices chosen is minimum and the number of events reported
by these devices is maximum. This is accomplished with the
help of the following three steps:

1) Construct the graphical model G(D,A, ω′) from an
instance of the DSQUID problem.

2) Establish the independent set I (schedule of devices)
using the modified GWMAX algorithm.

3) Disseminate the information obtained towards decision
making if a feasible solution to the optimization problem
(refer to Eqn.(9)) can be obtained.

A. Communication Protocol

In Section II, we discussed the device energy regulation and
device-base station beacon exchange phases within a particular
time epoch. During the device energy regulation, each device
sends its message of format 〈r, device ID, energy level,t〉 to
the successor devices and regulates its own energy level using
Eqn. (1), where r denotes the type of message i.e. regulatory
and t is the present time epoch.

In the device-base station beacon exchange phase, a se-
quence of communication among the devices and base station
takes place, as discussed below.
Step-1: Each device sends beacon message, containing a list of
event IDs sensed, to the base station. The message has the fol-
lowing format 〈sb, device ID, energy level, [event IDs]〉,
where sb specifies the type of message which is of sensing
device-to-base station type, and [event IDs] is the list of
events which the device has sensed.
Step-2: The base station on receiving the beacons, utilizes
Eqns. (3) and (4) to calculate ω′(di) for each device di. It
then invokes the DSQUID algorithm to choose the optimal
set of devices which have sensed disjoint sets of events. The
base station sends beacons to the chosen devices asking them
to send the information about the events sensed.
Step-3: The selected devices process and aggregate the col-
lected data samples and transfer the event information to the
base station.
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VI. EXPERIMENTAL RESULTS

Recall that the goal of the proposed bioSmartSense frame-
work is to ensure that the data collection mechanism in IoT-
driven smart city applications is energy efficient as well as
QoI-aware to address the issue of sustainability. The efficacy
of bioSmartSense has been extensively studied through the
development of a customized simulator (details explained in
Section VI-A) using Python’s SimPy Discrete Event Simu-
lation library [24]. Due to the scarcity of real-data in the
study of sustenance of smart city applications, we perform
experiments using synthetic data (particularly deployment of
devices and event occurrence) generated by our simulator. We
also compare the results with a state-of-the-art data collection
framework proposed from the perspective of smart city appli-
cations [4], which, to the best of our knowledge, is the only
work that aligns with our proposed data collection framework.

A. Simulation Settings and Parameters

We consider a deployment area of 2× 2 square kilometers
comprising a single base station and 50 IoT devices deployed
at random locations. The sensing devices are equipped with
WiFi connectivity and the transmission range (defined as
sensing radius in Section II) is assumed as 100 meters. The
base station is also WiFi-enabled and has a router with range
of 500 meters. The events occur at random locations within the
deployment region and their frequency in each epoch is given
by an exponential distribution with mean 20. For every event
we construct a boundary with a fixed radius of 50 meters. If
an event is sensed by two or more devices whose locations are
within the former’s boundary, then we assign the same event
identifier to the latter.

(a) Mapping Time (b) Energy Level of Devices
Fig. 6: Performance of GRN

B. Performance of GRN based regulation

The duration for simulation is 50 time epochs, where the
length of an epoch has been assumed to be 30 minutes. Also,
each epoch is divided into four time intervals of equal duration
to accommodate the following phases: energy regulation,
event sensing, beacon exchange, and information transmission.
These phases are repeated in a cyclic order in subsequent time
epochs. Each IoT device is equipped with rechargeable battery
energy of 15,000 Joules which makes the total residual energy
of the network 15, 000 × 50 = 750, 000 Joules. However,
we consider only 500,000 Joules as the initial energy budget
for sensing and reporting tasks. We take the preference factor

γ = 0.5 to assign equal weights to both ‘quantity’ and ‘quality’
in the device weighing function ω′, while the values for the
parameters of QoI index are given by α = β = 0.8.

In this section, we evaluate the performance of our proposed
mapping algorithm in terms of the time required for mapping
the networked IoT devices to the GRN topology (refer to
Section IV-A) and the energy levels of the devices due to
self-regulatory property of the GRN.

In Fig. 6a, we vary the number of IoT devices constituting
the IoTNet from 20 to 200 nodes and observe that the mapping
time ranges from a few seconds to 25 minutes. Assuming that
the deployment of the IoT devices will not change frequently
and that the mapping will be exercised only once, the time
taken is reasonable. As discussed in Section IV-A, the mapping
algorithm has a running complexity of O(m2). We verify this
by applying nonlinear curve fitting to fit the mapping data to
a curve of degree two. The resultant fit curve (shown in green
dots) has the form 0.09x2 + 2.31x− 0.87 = 0.

(a) Frac. of Events Reported (b) Prob. of device selection

(c) Device Energy Level
Fig. 7: Performance of bioSmartSense Framework

We observe the evolution of energy levels of the sensing
devices across the entire simulation time. The lower limit (L)
and upper limit (U ) for energy level of self regulation are
0.2 and 0.8 respectively, and the regulation rate is κ = 0.01.
Fig. 6b depicts the energy levels of different sensors in
different colors. The energy level of majority of the sensor
nodes lie between 0.5 and 0.8 due to the collective effect of
neighbor and self regulations.

C. Performance of bioSmartSense Framework

The objective of the DSQUID algorithm is to select a subset
of nodes that will report maximum number of non-redundant
information of the highest quality. Fig. 7a shows that the
average fraction of events reported (defined as ratio of the
number of events sensed to those events) range between 0.5
and 1.0. This implies that the proposed framework captures
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(a) Residual Energy (b) QoI Index

Fig. 8: Effect of GRN-based Regulation
majority of the events occurring over the sensing regions,
which is essential for the application to maintain its relevance.

Fig. 7b shows that likelihood of selection of devices by
the proposed framework. It follows a positively skewed bell-
shaped curve with maximum probability of selection of device
corresponds to the frequency of 3. This implies that the
device selection mechanism of bioSmartSense is not biased
and facilitates judicious use of energy. Thus, our framework
avoids choosing the same set of nodes in every time epoch
and maximizes the duration of uninterrupted service delivery.

Fig. 7c shows that the average energy level of selected
devices toggle between 0.5 and 0.6, while the minimum and
maximum energy levels range from 0.35 to 0.75. Thus, GRN-
based energy regulation enables our framework choose devices
with good blends of high and low energy levels, which will
implicitly allow the smart city application to sustain longer
without recharging of devices.

D. Effect of GRN-based regulation

We evaluate the effect of GRN-based regulation in bioS-
martSense by comparing it against systems, where GRN-based
node regulation is turned off and energy level of all devices
are fixed at 0.5 and 1. Fig. 8a shows that the GRN-based
regulation incurs almost equal energy cost as fixed regulation
0.5 and significantly lesser if the energy level is fixed at 1.
Thus, as far as saving residual energy is concerned, GRN
regulation-based bioSmartSense is comparable to the optimal
strategy. In contrast, the QoI index of the reports generated by
devices selected by bioSmartSense lies in between that of fixed
regulation 0.5 and 1.0. Here we observe a trade-off between
energy-efficiency and QoI index. However, note that a smart
application may not require higher quality reports at all the
time and for all sensing regions. For example, during peak
hours of the day, the application may need higher QoI, and for
the remaining time it tolerates moderate data quality. Hence,
bioSmartSense is overall the best choice for data collection
mechanism for sustainability of smart city applications.

E. Comparison with Existing Approach

We compare our framework with a distributed data col-
lection mechanism for smart city application, proposed by
Capponi et. al. [4]. A key difference in their approach is that
instead of fixed IoT devices as the data collecting unit, they
considered the built-in sensors of smartphones to generate data
for the application platform. The mechanism includes two data
collection policies: (i) Collector Friendly Policy (CFP) which

prioritizes data collection utility as specified by the application
platform, and (ii) Smartphone Friendly Policy (SFP) which
optimizes energy conservation of sensing devices and decides
on whether or not to report in the current time epoch. In the
interest of a fair comparison, we used the same values (in
Watts) for the energy constants δ1 = 3.68, δ2 = 0.37 and
δ3 = 0.11× 10−3 from [4].

(a) Avg. Residual Energy (b) Avg. No. of Events Reported
Fig. 9: Comparison with [4]

We consider 50 different scenarios of randomly occurring
events. Fig. 9a shows that the average residual energy of
the bioSmartSense framework marginally outperforms SFP
and significantly outperforms CFP. In addition, bioSmartSense
exhibits the least variation in residual energy for various
events scenarios. On the other hand, bioSmartSense exhibits
similar number of events sensed as CFP and outperforms SFP
(Fig. 9b). This shows that our proposed framework not only
preserves device residual energy, but also judiciously selects
the devices such that majority of the events get reported.
Thus, as far as sustainability and relevance of smart city
applications are concerned, the data collection strategy in
bioSmartSense shows dual property of energy consumption
and event sensing with quality when compared against the
state-of-the-art approach.

VII. CONCLUSION
In this work we presented a bio-inspired distributed event

sensing and data collection framework, called bioSmartSense,
to address the energy-efficiency and QoI requirements of
IoT-based smart city applications. The proposed framework
utilizes the regulatory information of Gene Regulatory
Networks (GRNs) as well as a heuristic for the Maximum
Weighted Independent Set (MWIS) problem to select a subset
of devices to sense and report event information of high
quality and quantity, under constrained residual energy
budget. We conducted extensive experiments on a customized
discrete event simulator and demonstrated that bioSmartSense
achieves higher event sensing and reporting capability, as well
as better energy-efficiency in comparison with state-of-the-art
data collection mechanism in smart city applications. As a
part of future work, we will study the effect of dynamic
sensing radius (w.r.t depleting residual energy) and mobility
of the devices on the overall performance. We will also look
for relevant real-data of smart city applications and then
validate our framework more rigorously.
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