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Abstract—Falls have serious consequences and are prevalent in
acute hospitals and nursing homes caring for older people. Most
falls occur in bedrooms and near the bed. Technological interven-
tions to mitigate the risk of falling aim to automatically monitor
bed-exit events and subsequently alert health care personnel to
provide timely supervisions. We observe that frequency-domain
information related to patient activity predominantly exist in very
low frequencies. Therefore, we recognize the potential to use ultra
low resolution acceleration information without the need to power
a traditional MEMS (Micro Electro Mechanical System) based
sensor. Consequently, we investigate a pervasive sensing modality
with low cost batteryless or wirelessly powered Radio Frequency
Identification (RFID) technology, with the potential for con-
venient integration into clothing, such as hospital gowns. We
design and build an ultra low resolution passive accelerometer-
based RFID sensor embodiment (ID-Sensor approach) for our
study. The sensor design allows deriving ultra low resolution
accelerometric data from the rate of change of unique RFID
tag identifiers in accordance with the movement of a patient’s
upper body. We investigate dense labelling of patient activity
sequences from the RFID data stream using a fully convolutional
network (FCN) and compare this network architecture with a
state-of-the-art network for human activity recognition as well as
a traditional machine learning method with engineered features.
We demonstrate that the low resolution RF powered acceleration
data embedded in the data stream provides a practicable method
for patient bed-exit detection where features can be efficiently
learned using a FCN architecture. We evaluate performance, true
alarms and false alarms, with 25 hospitalized older patients.

I. INTRODUCTION

The world population is rapidly ageing and in the year 2050
approximately 2 billion people will be 60 years of age or older
[1]. Therefore ageing associated issues such as increased risk
of falling are becoming prevalent. Approximately 30-50% of
older people living in long-term care institutions fall each year
[2]. Falls in residential care or hospitals lead to many adverse
consequences on the patients apart from physical injuries
such as anxiety, depression and loss of independence [3], [4].
Furthermore, falls are costly because they increase the length
of hospital stays. A recent study estimated the total medical
costs for falls in 2015 at approximately $50 billion USD in the
United States alone [5]. In residential care and hospitals, falls

commonly occur near and around the patients’ beds [3]. A
recent study, a first of its kind, conducted an in-depth analysis
of video surveillance recordings over three years and revealed
that people fall as a result of getting out of bed and also as a
result of walking [4].

Automatically recognizing patients leaving their bed in
real time provides an opportunity to intervene and supervise
unattended patients. A common strategy to provide targeted
care to older patients in hospitals is by using automatic alarm
systems. Alarm systems issue a warning when a patient is
getting out of bed with the aim of staff promptly attending to
the patient and thereby potentially reducing the risk of a fall
or rendering immediate assistance in case of a fall [6]–[8].
Such systems, focused on prevention are more desirable than
systems focused on detecting a fall after the event has already
occurred [8]. Current approaches to recognize bed-exits using
pressure sensors—for example pressure mats [9], [10]—are
shown to be ineffective in reducing falls in clinical trials [11].
Older people have expressed privacy concerns with the use of
camera based technologies [12]. Recent studies have explored
battery-powered body worn sensors for patient activity recog-
nition [8], [13]; however, these sensors are expensive1, require
manual attachments, maintenance and battery replacements,
and strapping to the body as in [13].

In contrast, we postulate an alternative. We observe that
patient activity related information in the frequency-domain is
found in very low frequencies of typically less than 4 Hz [14].
Therefore, we recognize the potential to use ultra low reso-
lution acceleration information without the need to power a
traditional MEMS (Micro-Electro-Mechanical Systems) based
sensor to gather human motion information. Consequently, we
design an RF (radio frequency) powered or passive sensing
modality with low cost batteryless Radio Frequency Identi-
fication (RFID) technology with the potential for convenient
integration into clothing, such as hospital gowns. In particular,

1MbientLab Bluetooth sensor pricing (these prices do not include the cost
of coin cell batteries) https://mbientlab.com/pricing/
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we investigate the efficacy of embedded acceleration data
extracted from the modulation of two unique identifiers in
an RFID data stream. The change in identifiers or IDs in
accordance with human motion data is derived from a tag with
two commercial off-the-shelf (COTS) RFID circuit modules as
illustrated in Figure 1b.

There are many advantages to using passive wearable UHF
RFID for capturing the movements of older patients: i) passive
devices have potential for an indefinite operational life without
requiring maintenance or battery replacements; ii) wearable
RFID technology addresses the problem of distinguishing indi-
vidual patients from multiple others, faced by most device-free
sensing schemes and allows individualizing bed-exit alarms to
match patient needs over time; and iii) RFID tags are low-cost
(7-15 U.S. cents) [15], hence, disposable to support infection
control protocols in hospitals. Furthermore machine washable
RFID tags are now commercially available and can be easily
woven into hospital garments [16] creating possibilities for
unobtrusive monitoring of patient activities. Unobtrusiveness
has been identified as a key acceptance criteria by older peo-
ple [17], [18]; a necessary condition for translating technology
into practice. Most notably, we see an increasing technology
trend to integrate RFID technology with textiles [19].

We have seen demonstrated capability to use commercially
available passive UHF RFID technology for recognizing hu-
man interactions with RFID tagged objects [20]–[22], tracking
of objects or people [23], [24], as well as use of large number
of body-attached RFID tags for human motion tracking [25],
[26]. However, our study is a first-of-its-kind. To the best of our
knowledge: i) the potential to extract and use low resolution
acceleration data from an extremely low power method for
human activity recognition; and ii) a practicable means for
recognizing bed egress motion for a clinical application with a
worn RFID tag and the evaluation with a target demographic
of frail older hospitalized people have not been previously
investigated.

A. Contributions

Our main contributions of this paper are given below.

• We investigate a new and pragmatic human motion sens-
ing approach. We observe that patient activity related
information in the frequency-domain exist in very low
frequencies. We construct a prototype RFID device—
ID-Sensor—using only low cost commercially available
RFID Integrated Circuits (ICs) to obtain ultra low res-
olution acceleration data. We show that the ID-Sensor
provides a unique ability to capturing human motion
information without a conventional accelerometer.

• We consider a fully convolutional neural network (FCN)
architecture capable of dense labelling and predictions.
This is a natural formulation as human activity recog-
nition is essentially a sequence labelling problem where
a class label is estimated for each sensor sample in a
time series. We demonstrate that effective features can
be learned from our unique ID-Sensor data stream by
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Fig. 1. (a) Design of the RFID sensor tag. Each RFID Integrated Circuit (IC)
has a unique tag ID. As a result of only one RFID IC being attached to the
antenna, only one ID will be reported by the RFID platform at a given time.
This figure illustrates the state of the ID-Sensor when ID 2 is reported. (b) ID-
Sensor: The batteryless RFID sensor tag prtotype used in our experiments.
(c) A patient wearing the batteryless RFID tag attached at the shoulder level
to a hospital garment. (d) Comparison of the ID reported by the ID-Sensor
against acceleration values obtained from a MEMS accelerometer.

comparing performance with engineered features and a
traditional machine learning method.

• We conduct a pilot study with 25 hospitalized older
patients. We demonstrate the efficacy of our approach for
recognizing bed exits with learned features and classifier
from the FCN. In particular, our experimental study is
conducted in a realistic experimental setting and with a
demographic of participants intended for the application.
We demonstrate the capability to employ a single low
cost body-worn passive UHF RFID tag for sensing of
patient activities.

• We release a new activity dataset collected from hospital-
ized older people to the research community—available
from [27].

We defer related work to Section VII. In the following
sections we describe our sensor construction and operation,
followed by the experimental design and the machine learning
approaches we formulate for the activity recognition task. We
discuss our results and conclude our paper in Section VIII.

II. PASSIVE RFID-BASED ID-SENSOR

Passive RFID tags harvest energy radiated by an RFID
reader antenna and once successfully powered, responds by
backscattering the Radio Frequency (RF) signals back to
the RFID reader antenna. Apart from the unique electronic
identifier sent from a tag, modern RFID readers are able to
measure detailed RF communication-related properties such
as received signal strength expressed as RSSI and phase
difference of the received signal. While information extracted
from RSSI has been exploited in the past, the exploitation
of information related to changes in phase information are
rarely explored for human activity recognition. We aim to
exploit both of these information sources. Notably, both phase
and RSSI related information is extracted at no additional
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Fig. 2. (a) Typical layout of a hospital bed room. The picture shows a single
bed room used in our experimental study and indicates the reader antenna
locations. (b) Experimental set up in a double bed room.

computational or power burden to the tag and thus does not
impact the reading range or the performance of the tag.

Our goal is to create and exploit another such information
source for human activity recognition.

We employ low-cost batteryless RFID technology to build
our ID-Sensor to capture low frequency information related to
human motion. We developed this prototype based on [28].
The platform consists of two antiparallel mechanical tilt
switches and two RFID Integrated Circuits (ICs) attached to
a single Radio Frequency (RF) antenna on a Printed Circuit
Board (PCB) substrate (see Fig. 1a and Fig. 1b). Since the
mechanical switches are attached opposite to each other, only
one RFID IC is attached to the antenna at a time. Each RFID
IC has a unique tag ID (ID1 or ID2). Starting from the case
where the first RFID IC is connected, flipping (or shaking)
the tag will result in the first IC becoming disconnected, and
the second RFID IC becoming connected to the antenna. At
a given time, the ID stored in the RFID IC connected to
the antenna will be reported by the platform. Thus, tilt and
accelerometer data are encoded as modulations between the
two IDs reported back to the reader.

The key concept here is the exploitation of two tiny bat-
teryless UHF RFID tag ICs in a configuration that allows
switching between the ICs based on the direction of the
gravitational force vector in relation to a human body reference
frame. Most notably, the accelerometer in essence consumes
no electrical power, or more accurately, is limited to the
negligible Ohmic losses of the switching element. Importantly,
the ID-Sensor uses low-cost readily available components,
is mass producible, and has RF performance equivalent to
conventional single IC RFID tags. Furthermore, patients are
precisely and automatically identified by the unique electronic
identifiers stored in the worn RFID tags.

Figure 1d compares the low resolution acceleration infor-
mation received from the ID-Sensor with acceleration values
obtained using a MEMS accelerometer (ADXL330). This was
obtained by rotating both ID-Sensor and the accelerometer at
an identical rotational velocity. We can see that the ID reported

by the ID-Sensor is capable of representing the direction of
the gravitational force vector and rate of rotation or angular
acceleration. However, it is also evident that the ID reported
by the ID-Sensor can sometimes result in noisy measurements
as highlighted in Fig. 1d. This is due to the steel ball failing
to disconnect at times and as a result connecting both RFID
ICs to the antenna simultaneously.
Therefore, our study will investigate the ability to use this noisy
low resolution acceleration information for human activity
recognition problems.

The consideration of whether the noisy acceleration data
provides any additional information forms the basis for the
two approaches we will investigate:
• ID-Sensor Approach: Here, we utilize the embedded

acceleration data in the form of changes in IDs from our
ID-Sensor in addition to RSSI and phase information.

• Tag Approach: We ignore the ID modulation information
and we treat ID-Sensor as a simple commercial off-the-
shelf (COTS) batteryless UHF RFID tag. Hence we do
not distinguish between ID1 and ID2 and instead treat
them as a single identifier.

III. EXPERIMENTAL STUDY

The participants for our experimental study were inpatients
at the Geriatric Evaluation and Management Unit of the Queen
Elizabeth Hospital, South Australia. The patients selected for
the study were able to consent to the study and mobilize
independently. This study had ethics approval from the human
research ethics committee of the Queen Elizabeth Hospital,
South Australia (2011129). We describe the details of the data
collection and experimental settings below.
Participants: Twenty five older participants were recruited
(age: 84.4 ± 5.3 years, height: 1.68 ± 0.09 m) for the
study with the help of geriatricians. All participants provided
informed consent and no honorarium was paid. The study was
completed over a six-month period where each trial with each
volunteer lasted between 60 to 90 minutes. The ID-Sensor
was attached to the loosely fitted hospital gown and over a
participant’s shoulder as shown in Fig. 1c.
Settings: The data collection occurred in the individual
rooms of patients consenting to the study. These patient rooms
included both double and single bed rooms. The furniture
and, hence, the antenna deployment in all the patient rooms
were similar. The generic deployment of antennas used in the
experiments is illustrated in Fig. 2a and Fig. 2b. During trials
the position of the back rest on a bed was not fixed and
was generally elevated slightly to suit the personal comfort
of individual patients. Although the room setting was mostly
fixed during the experiment, movement of other people (such
as nurses) was not restricted.

We used an Impinj Speedway Revolution reader operating at
the regulated Australian RF frequency band of 920-926 MHz
and a maximum regulated power of 1 W. The communication
between the RFID tag and the reader is governed by the ISO-
18000-6C air interface protocol. In this study, three antennas
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Fig. 3. Typical variations in RSSI values for in-bed and out-of-bed activities.
Here, A: walking, B: Sitting on bed, C: lying on bed and D: Standing

were attached to the RFID reader and strategically deployed
in patient’s rooms (see Fig. 2a and Fig. 2b). The antenna
deployment was designed to illuminate the area covering the
bed and chair. The read distance of UHF RFID tags in free
space is generally 10 m. In the experimental set-up, the read
rate (or sampling rate) of the ID-Sensor was approximately 20
reads per second.

Data collection: Since our study participants were hospital-
ized older frail patients, it was observed that most of their time
was spent lying in bed. Therefore, in order obtain sufficient
amount of information for bed-exit events, and to minimize the
physical and mental stress for the participants, the study was
conducted using broadly scripted activity routines to allow us
to obtain an adequate number of bed exit events.

The participants were instructed, prior to each trial, to lie
on the bed in a manner most natural and comfortable to
them. They were requested to get out of the bed during the
experiment and no specific instructions were given about how
or when to get out of the bed. As they were frail patients,
the number of times each patient got out of the bed was
not fixed and was dependent on their physical abilities. They
were allowed to perform other activities while in-bed as well
as while out-of-bed. Typical in-bed activities involved lying,
sitting, watching a television, drinking and reading. Typical
out-of-bed activities involved standing and walking. Given the
very limited number of activities a patient can perform in a
hospitalized environment, we believe these activities represent
adequate class diversity. Given the varying physical abilities
of our patient group, we also benefited from very high intra-
class diversity. A researcher annotated the activities being
undertaken. Given our interest in bed egress motions, two
ground truth activity labels were considered for our study:
i) in-bed; and ii) out-of-bed.

Data set: The total data set contains 244,440 tag readings
which included 107,439 in-bed and 137,001 out-of-bed related
tag readings. Read rate (or sampling rate) was generally
between 5-20 reads per second. The data set included 77 bed-
exit events (i.e. transitions from in-bed to out-of-bed).

IV. APPROACH

A bed-exit event is recognized as a transition from in-
bed to out-of-bed. Once a bed-exit is identified, interested
parties, such as caregivers, can be notified, by means of
a pager message or phone notification as discussed in [8],

Fig. 4. Capture of a bed-exit posture transition of a patient where the ground
truth changes from in-bed to out-of-bed. Changes in ID information embed
low resolution accelerations using the ID-Sensor. We can also observe typical
RSSI patterns associated with the activated ID of the ID-Sensor prior to,
during and after the activity transition.

[18]. Our approach to recognize bed-exits is built around the
observations that: i) human motion information can be ex-
tracted from the channel state measurements, RSSI and phase,
made by an RFID reader; and ii) low frequency information
associated with patient movements from the ID-Sensor where
the data stream from the reader can be also be used to extract
low resolution acceleration information. Importantly, we can
extract all three information sources without a power burden
on the tag and through standard interrogation of the ID-Sensor.
However, all of these measurements are noisy; the challenge
is to learn the hidden patterns to recognize bed egress motions
from noisy data. We discuss these information sources briefly.

Signal strength information: RSSI is an indicator of the
power of the tag signal received by an RFID reader an-
tenna [29]. RSSI is predominantly affected by the distance
between the reader and the tag as well as the orientation of
the tag antenna. Based on the Friis transmission equation,
RSSI of a backscatterd signal that is captured by an RFID
reader has the form of PtG2

tG
2
pathK. Here, Pt is the output

power of the reader, Gt is the gain of the reader antenna,
K is the backscatter gain. The Gpath is the one-way path
gain of the deterministic multipath channel determined as
Gpath =

(
λ

4πR

)2 | H |. Here, R is the line of sight
distance between the tag and the reader antenna, and H is
the channel response due to multipath and channel absorption
characteristics. For instance H ∝ e−αR where α is the
absorption coefficient of the medium. We can see that although
RSSI is sensitive to channel characteristics, it is predominately
determined by R as RSSI ∝ 1/R4.

Figure 3 illustrates data collected using reader antenna 3 for
a sequence of activities related to getting into bed and then
getting out of bed. From Fig. 3 we can observe that RSSI is
sensitive to movements. For instance, the posture transition
from lying on bed to sitting on bed (i.e. in Fig. 3, from C
to B) has resulted in a notable increase in RSSI value while
the posture transition from sitting on bed to standing (i.e. in
Fig. 3, from B to D during 600 s to 620 s) has resulted in a
decrease in the RSSI value.

ID-Sensor information: We have illustrated in Fig. 1d and
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discussed in Section II the capability of obtaining acceleration
data by considering the ID modulations within the RFID data
stream. As observed in Fig. 4, changes in the reported IDs
are likely to be observed for a patients upper body movement
such as during a bed egress activity. This is a consequence of
the sensor moving in accordance with a patient’s upper body
movements and rotations that changes the orientation of the
sensor’s mechanical switches with respect to the gravitational
force vector resulting in modulations between ID1 and ID2 of
the sensor. These modulations capture low frequency accel-
eration information associated with human motions. Further,
we observe that RSSI patterns captured by each activated ID
generally differ according to a patient’s lying and standing
posture as well as during a posture transition (see Fig. 4).
Therefore, RSSI patterns specific to each ID provide further
movement information.

Phase information: Phase estimates from an RFID reader is a
measure of the phase angle between the RF carrier transmitted
by the reader and the return signal from the tag. RFID readers
performs frequency hopping from one channel to another. As
a result, phase values are dependent on the carrier frequency.
Phase estimates are related to two motion information sources:
i, for a given frequency, the phase of the tag signal at two
different time instances can estimate the tag’s radial velocity as
Vr ∝ ∂Ψ

∂t ; and ii) the distance between an RFID reader antenna
and the RFID tag is proportional to the partial derivative of
the phase with respect to the derivative of channel frequency
as d ∝ ∂Ψ

∂f . Given the sensitivity of phase information to
small changes in distance, we can expect phase data to capture
activity transition information. Figure 5 shows an extract of
variations in phase information across two activity transitions
in our dataset. We can observe that RF phase (Ψ) is generally
affected by even small movements of an RFID tag while RSSI
is primarily affected by much larger movements.

A. Classification Problem

We are interested in determining the associated activity label
(in-bed or out-of-bed) for each ID-Sensor reading. We treat
the problem of determining whether a patient is in-bed or out-
of-bed to be a binary classification problem. Subsequently, a
bed-exit event is recognized as a change in classification from
in-bed to out-of-bed.

The data sequence collected is a time series and a single
tag reading consists of the 4-tuple: i) reader antenna ID (aID);
ii) RSSI; iii) Phase; and iv) tag ID (ID). It is important to trans-
form the received data sequence into a suitable representation

before applying activity-based machine-learning models. The
most common strategy is to segment the time series. We used
a fixed time sliding window, however, the selection of segment
size (δs) is an empirical process determined by each algorithm.
Our goal is to investigate a classical machine learning method
with a feature learning method based on state-of-the-art neural
network architectures used with kinematic sensor data. We
recognize that the nature of RFID data is significantly different
from kinematic sensor data and feature learning from RFID
data streams for activity recognition remains to be explored.
Therefore, we use the classical machine learning method of
Logistic Regression (LR) with engineered features as a bench-
mark to compare with two deep neural network architectures.

B. Logistic Regression

In this study, we used a classical machine learning algorithm
capable of generating probabilistic models using feature vec-
tors extracted from segments. LR assumes that the training
data, (xt, yt) where t ∈ N, xt ∈ Rd is the feature vector
and yt ∈ {−1,+1}, is the class label, are independent and
identically distributed. LR models the conditional probability
Pr(yt = 1|xt) as follows:

Pr(yt = 1|xt) =

(
e<w,xt>

1 + e<w,xt>

)
=

(
1

1 + e−(<w,xt>)

)
here w is the learned model.

We engineered a number of features using the information
available in a given segment with respect to: i) RSSI; and
ii) correlation between participant’s movements and antennas
capturing tag readings. Additional features utilizing one-bit
acceleration were engineered for the ID-Sensor approach (see
Table I).
Features based on RSSI: For a given segment Si with respect
to a given tag reading, i, we used the features summarized
in Table I and also used in [18], [30]. In order to further
capture the changes in RSSI for short distance movements,
we introduce new a binary feature M ∈ [0, 1]

|A| to determine
whether a patient is moving towards or away from a fixed
antenna within Si where Mk is defined as:

Mk = 1[t
max(Si(RSSIk))

>t
min(Si(RSSIk))

], (1)

where k ∈ A and 1x assumes 1 if x is true and 0 otherwise.
A is the set of antennas in the deployment. Although the
proposed binary feature Mk can be used to identify human
movements within a segment, it cannot be used to recognize
trends in the RSSI values over a longer period. To capture
these patterns we considered a longer segment Si of size 3δs
with three equal sub-segments Sj

i , j = 1, ..., 3. We consider
the mean value of RSSI in each sub-segment. Since S3

i = Si
we only include mean RSSI value for Sj

i , j = 1, 2.
Features based on correlation between participant’s move-
ments and antennas capturing the tag readings: It was
observed that the antennas that collect readings differ depend-
ing on the location and movements of the patient. The RFID
antenna facing the RFID tag are most likely to both power
and collect data from the tag.
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TABLE I
FEATURES EXTRACTED FROM A SEGMENT

Notation Description
RSSI based Features
RSSIi Most recent RSSI value
mean (Si(RSSIk)) Mean RSSI value
max (Si(RSSIk)) Maximum value of the RSSI
min (Si(RSSIk)) Minimum value of the RSSI
std(Si(RSSIk)) Standard deviation of the RSSI
Mk Whether the maximum RSSI value is followed by the

minimum RSSI value
Phase based Features
Ψi Most recent phase value
median(Si(CFPRk)) Median of the CFPR
sum(|Si(CFPRk)|) Sum of the absolute values of the CFPR
std(|Si(CFPRk)|) Standard deviation of the CFPR
Event based Features
RCk Relative read event count per antenna
ωk Antenna which corresponds to the majority of events in St

aIDi The antenna ID corresponding to the most recent tag reading
Features Specific to ID-Sensor approach
ai ID of the most recent tag reading
|Si(a = x)|/|Si|, x = 1, 2 Relative ID count
* k = 1, 2, 3 (antenna number), i is number of the respective tag reading

First, we considered a feature that indicates the relative
count of read events for each antenna (RC ∈ R|A|) within
Si which is calculated as:

RCk =
|Si(aID = k)|

|Si|
, (2)

where k ∈ A. Second, we introduced a vectorized binary fea-
ture, ω ∈ {0, 1}|A|, to identify the antenna which corresponds
to the majority of events in Si, which takes values as:

ωk =

1 if k = arg max
l∈A

RCl

0 otherwise
(3)

where ωk represents the kth position of the vector ω which
corresponds to the antenna k.

Phase-based Features: In our study we used statistical fea-
tures derived from phase measurements from each antenna as
in [21], [22]. These features are summarized in Table I.

Specific Features Engineered for the ID-Sensor approach:
We build the following features to extract the acceleration
information available in a segment. The ID of the most recent
tag reading (ai) was considered as a feature as it approximates
to a one-bit acceleration value. We included the relative ID
count (RI ∈ R2), as a feature as it provides information
about the changes in the IDs or rate of change information—
see Figure 4—during the considered segment Si. In order
to allow the classifiers to learn from RSSI patterns specific
to each ID as shown in Fig. 4, we extracted RSSI features
described previously with respect to each reported ID. In total
we extracted 15 features for the Tag approach and 17 features
for ID-Sensor approach.

C. Neural Network approaches

Instead of engineering features, current research suggests
that we can learn features from kinematic sensors and build
a classifier using deep neural networks using raw readings.

We consider two state-of-the-art architectures: i) Deep Con-
volutional and LSTM Recurrent Neural Network; and ii) Fully
Convolutional Neural Network architecture.

Deep Convolutional and LSTM Recurrent Neural Network
(ConvLSTM): We design a network architecture following
[31]. This network architecture has reported state-of-the-art
performance on benchmark human activity datasets based on
kinematic sensors. The convolutional layers learn to extract
features under the independent and identically distributed
assumption of the input segments while LSTM layers cap-
tures temporal dependencies in sequential data, such as the
RFID data stream in our work. The network architecture we
developed and used is described in Fig. 6a. Using the notation
from [32] the network can be summarized as: C(32)–C(16)–
C(8)–C(2)–R(200)–R(200).

Fully Convolutional Neural Network (FCN): We design a
fully-convolution-network (FCN) following the design in [24].
This network architecture is more convenient to train than
LSTM based networks since it lacks any recurrent connections.
In addition, the network fully convolutional architecture has
reported new state-of-the-art performance measures for bench-
mark human activity recognition datasets with body worn
kinematic sensors. Further, the FCN architecture addresses
issues with window label ambiguity—the multi-class window
problem [24] where windows overlap multiple classes while
ground truth labels are limited to selecting, for example, the
majority class as the ground truth label for a given segment.
The network architecture we designed for our classification
problem based on [24] is described in Fig. 6b. Using the
notation from [32] the network can be summarized as: C(10)–
P -C(10)–P–C(10)–P–C(10)–P–C(10)–P–C(10)–C(2)-S.

As input, we use a minibatch size of 100, feeding the
inputs [tag ID (a), aID, RSSI , and phase (Ψ)] as individual
channels to the network. We use a window size of 30 for the
ConvLSTM network and a window size of 64 for the FCN.
For the ConvLSTM based network, we unroll the network 40
steps. Both networks were trained using gradient descent with
the Adam optimizer until convergence. The code and model
parameters for the networks used will be available at [27].

V. STATISTICAL ANALYSIS

Our main objective is to reduce the missed and false bed-
exit events. Therefore, we selected precision (P ) and recall
(R) for our evaluation and measure performance using the
F1-score (F ) calculated as: F = (2× P ×R)/(P +R).

In order to evaluate bed-exit event recognition performance
we defined a true positive (TP) bed-exit event as: i) a bed-
exit event that occurs no more than δt time before the actual
bed-exit; or ii) a bed-exit event that is recognized while the
patient is actually out-of-bed. False positive (FP) bed-exit
events are incorrectly recognized bed-exit events based on
the above definition of TP. Now, P = TP/(TP + FP ) and
R = TP/(TP + FN).

As our study participants were hospitalized older patients,
we observed during our trials that while sitting on bed, often,
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Fig. 6. a) An overview of the ConvLSTM network used. A 30 sample window is fed into a network consisting of 4 convolutional layers (4x1 convolutions
with a stride of 2, tanh activation), followed by a dense RNN network (LSTM cells). Dropout (with a keep probability of 0.7) is applied to the inputs and
outputs of each LSTM layer. We used strided convolutions and gradually reduce the number of features in the convolutional layers to achieve dimensionality
reductions. This differs from from the original network described in [31]. We found these choices performed better with the low information content of the
raw sensor data. b) An overview of the FCN network used. We used 4 Conv/Max pool layers. Similar to [24] we kept the stride of Conv and Max-pool layers
as 1. However, instead of using 2D convolutions we used 1D convolutions (3x1 kernels with tanh activation) which we found performed better with our data.

TABLE II
BED-EXIT PERFORMANCE WITH LEAVE ONE OUT CROSS VALIDATION

F-Score Recall Precision
Tag approach
LR 0.61 1.00 0.44
FCN 0.61 1.00 0.44
ConvLSTM 0.69 0.90 0.57
ID-Sensor approach
LR 0.84 0.90 0.80
FCN 0.85 0.86 0.86
ConvLSTM 0.78 0.92 0.68

several attempts were required by patients to actually transition
out of bed. Therefore, we analysed the sitting on bed durations
(D) for patients before getting out of the bed and selected
δt = mean(D)+std(D) ≈ 30 s. In the study, bed-exit alarms
are recognized as TPs as long as the patient is out-of-bed
because people could fall during and after bed-exits [4]; hence,
knowing that the patient has left the bed will provide the
opportunity for the nurses to intervene and possibly prevent a
fall or provide immediate assistance in case of a fall.

We evaluate our performance measures using leave one
patient out cross validation. This validation approach is a
participant independent testing scheme. This allows us to
evaluate performance against a participant never seen during
training or validation. Although this approach can show poor
performance results, we can expect the results to be closer to
that realized in a real world deployment.

VI. RESULTS

Table II illustrates performance obtained for bed-exit event
recognition using leave one patient out cross validation. Ac-
cording to the mean F-Score, ID-Sensor approach has outper-
formed Tag approach. We can expect the higher performance
of the ID-Sensor approach as a consequence of the information
from the low resolution acceleration data embedded in ID
modulations of the ID-Sensor approach (see Fig. 4).

We further analyzed the bed-exit event recognition perfor-
mance in terms of TPs and FPs for each patient. The results
are shown in Table III for the best performing method, FCN.
We can see a significant reduction in FPs with the ID-Sensor

TABLE III
BED-EXIT RECOGNITION PERFORMANCE FOR EACH PATIENT USING FCN

ID-Sensor Tag
Patient ID Actual TP FN FP TP FN FP

0 2 2 0 0 2 0 0
1 3 3 0 0 3 0 1
2 2 2 0 0 2 0 7
3 3 3 0 0 3 0 6
4 3 1 2 0 3 0 3
5 3 3 0 0 3 0 5
6 2 2 0 1 2 0 8
7 3 3 0 0 3 0 1
8 1 1 0 0 1 0 2
9 6 3 3 0 6 0 0

10 3 3 0 0 3 0 2
11 3 2 1 0 3 0 6
12 3 3 0 1 3 0 7
13 2 2 0 0 2 0 12
14 3 3 0 1 3 0 1
15 3 3 0 0 3 0 4
16 3 3 0 0 3 0 2
17 7 4 3 0 7 0 4
18 3 3 0 3 3 0 3
19 3 3 0 0 3 0 1
20 3 2 1 2 3 0 1
21 3 3 0 1 3 0 7
22 3 3 0 0 3 0 0
23 3 3 0 0 3 0 7
24 4 3 1 2 4 0 8

Total 77 66 11 11 77 0 98

approach. This is due to the additional information extracted
from the low resolution acceleration data in the ID-Sensor
approach, as shown during an activity transition in Fig. 4, as
well as the RSSI pattern associations with the activated ID
during static postures such as lying and posture transitions.

Upon close inspection of the instances where false bed-exit
events or missed bed-exit events are reported, we identified
that they are predominantly due to inadequate tag readings
while lying in bed and during getting out of bed. The missed
tag readings are a consequence of the ID-Sensor being attached
to a single shoulder of a patient’s loosely fitted garment and not
being adequately exposed to the antennas. This can occur as
the patient is lying on their side on the bed with the shoulder
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Fig. 7. Bed-exit event recognition delays for the ID-Sensor approach

on the mattress. The lack of data or the sparseness in data
consequently led to false or missed bed-exit events.

In addition to predicting bed-exits correctly, the system
should ideally report bed-exits in a timely manner—with
low latency. Figure 7 illustrates the distribution of delays
with respect to correctly identified bed-exit events (i.e. TPs).
According to the distribution of delays we observed that, for
all approaches, the majority of the bed-exit events (> 60%)
are identified within a period of 10 s with respect to an
actual event. However, a classifier that makes a large number
of false predictions will likely result in less delays due to
constant alarm predictions. This can be seen with the results
of ConvLSTM approach where nearly 90% of alarms are with
in 10 s. However, we can see from Table II that the ConvLSTM
for the ID-Sensor approach has high recall but lower precision
values indicative of a larger number of false alarms (i.e. FPs).

VII. RELATED WORK

Based on the sensor deployment strategy, we categorize
the existing bed-exit recognition systems broadly into: i) en-
vironmental sensor-based approaches or device-free methods;
and ii) body-worn sensor-based approaches. Given the clinical
context of our study, we focus mainly on approaches relevant
for detecting bed egress motions as opposed to general activity
recognition or human motion detection.

A. Environmental sensors

Studies have investigated the performance of bed-exit alarm-
ing systems based on one or multiple sensors strategically
placed on or around the bed [9], [11], [33], [34]. Most of
these methods involved pressure sensors or pressure mats. In
general, pressure mats need daily maintenance to check correct
functionality as they are subject to constant mechanical stress
and are highly likely to move from their ideal placement on the
bed. Moreover, pressure mats require disinfection because of
possible exposure to body fluids, and protocols for controlling
infections. Additionally, pressure sensors were shown to be
unreliable for patients lighter than 45.4 kg (100 lbs) [11]. In
fact, two recent randomised control trials evaluating pressure
sensor alarms systems to prevent falls found no significant
reduction in falls [6], [35]. Both studies reported high false
alarms (incorrectly identified alarms) as a significant reason
for the negative results.

In contrast Hilbe et al. [33] used bed rails fitted with
pressure sensors for bed-exit recognition. However, bed rails
can potentially increase harm where a fall may then occur from

a greater height resulting in more serious injury [36] and are
no longer considered best practice.

Bruyneel et al. [9] proposed the use of multiple types
of commercially available sensors, placed under the bed.
These included three sensors to measure the temperature, two
piezzo-electric sensors to measure the body movements and
three resistive sensors to measure the presence or absence of
the patient. The system was evaluated with young healthy
participants. Notably, the temperature sensor resulted in a
response delay of up to two minutes while it required more
than one hour for the system to reach equilibrium between
body and mat temperature.

Additionally, commercially available pressure sensor arrays
attached to bed mattresses [10] or RFID tags mounted onto
walls [37] have been used to analyse sit-to-stand motions.
Information from pressure sensor arrays were viewed as
image data to identify different phases of the sit-to-stand
transitions. Although the focus of these studies was not bed-
exit recognition, a sit-to-stand transition may be considered to
represent a bed-exit at times [38]. However, further evaluations
are required to measure performance for bed-exit recognition,
especially with frail older people. The studies above attached
sensors to infrastructure rather than individuals, limiting their
detection to a specific activity or physical area whilst not
solving the person distinguishability problem of device free
methods [25].

B. Body-worn Sensors

Research studies have looked at kinematic sensors [13],
[14], [18], [30], [38], [39] for ambulatory monitoring because
of the added possibility of monitoring a person in multiple
locations. Most of these studies follow the pioneering study
in [14] where a kinematic sensor, composed of one miniature
piezoelectric gyroscope and two miniature accelerometers, was
attached to a person’s sternum to monitor activities such as
walking and sit-to-stand posture transitions. However, there
is limited research work focused on movement sensor alarm
systems for bed-exit recognition [8], [13], [18]. Researchers
in [13] used a battery powered acceleration sensor that was
strapped with a bandage to the thigh to acquire motion
information to identify bed-exit events. The clinical trial in [8]
proposed the use of a wearable Bluetooth sensor inserted into
a patient vest for determining bed and chair egress movements
to realize an alerting system.

Even though battery powered body worn devices generally
provide rich sensor data, they are expensive, bulky, obtru-
sive and require maintenance such as changing or replacing
batteries [8]. Further, evidence in the literature highlights
the preference for small, unobtrusive and easy to operate
monitoring devices by older people [40].

Recently, wearable and batteryless Computational RFID
(CRFID) tags capable of supporting embedded sensors have
been used to recognize bed and chair egress movements [18],
[38]. These studies mainly rely on a MEMS 3D accelerometer
sensor data to recognize bed and chair egress movements.
Although we have seen the commercialization of CRFID
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TABLE IV
PERFORMANCE OF PREVIOUS BED-EXIT MOVEMENT ALARM METHODS

Bed-exit recognition approach Precision Recall Participants’ age (years)

Hilbe et al. [33] 96% 18-60
Bruyneel et al. [9] 100% 91% 37±9 and 45±11
Najafi et al. [41]* 93% 66±14
Godfrey et al. [39]* 83% 77.2±4.3
Torres et al. [18] 66.83% 81.44% 71 to 93
Ours 86% 86% 84.4 ±5.3
* a sit-to-stand posture transition was considered as a bed-egress.

technology recently, a wearable CRFID is still undergoing
research and development. Further, the per-unit cost of CRFID
devices are still several tens of USD. Moreover, these studies
show that wirelessly powering a MEMS 3D accelerometer
remains a challenging task and leads to loss of information and
highly sparse data streams that affect performance of activity
recognition algorithms [18].

VIII. DISCUSSION AND CONCLUSION

We have designed a sensing approach using mature COTS
UHF RFID technology without the need for a high resolution
kinematic sensor employed in previous studies. Our approach
provides significant advantages when compared to CRFID
devices, battery powered body worn sensors and pressure
sensors. COTS passive RFID tags are: i) small in size, thus
increasing the possibility for integrating the tags into hospital
gowns; ii) low in cost—0.07 to 0.15 USD [15] and batteryless,
thus providing greater economic advantages and increasing the
possibility to dispose the tags to support hygiene protocols in
hospitals; and iii) able to solve the problem of distinguishing
individuals and monitoring individuals in multiple locations.

We investigated the efficacy of our ID-Sensor approach
for recognizing hospitalized fail older people’s motions to
alert on bed-exits. We have developed a fully convolutional
neural network architecture capable of learning information
from RFID data streams as opposed to previous applications
in wearable sensor data from kinematic sensors. The ID-
Sensor approach with the FCN dense labelling and prediction
approach depicted the highest performance (F-score of 86%).
Further, our data was collected in either single- or double-bed
rooms, thus suggesting that the approach is agnostic to the
environment across similar antenna deployments.
Comparisons: In the recent past, several bed-exit systems
have been developed. Table IV summarizes the results of pre-
vious bed-egress movement recognition approaches, together
with our study results. We have excluded pressure mats given
the lack of clinical evidence for their efficacy. It is difficult to
make a fair comparison with these due to: i) differences in the
experimental setting such as the characteristics of the study
participants and the duration of the study; and ii) differences
in the performance evaluation measures used. Nevertheless, we
can see that the ID-Sensor performs comparably better than
methods tested with older people.

Studies [9], [33] considered bed exits and reported recall
values of over 90%. However, performance reported was based
on experiments with young and middle-aged adults while

absence of precision results means that we are unable to
comment on false alarms as a function of all alarms. Notably,
the empirical methods used were developed and tested with
the same dataset; consequently, yielding optimal heuristic
measures for the particular dataset. In contrast to a low-cost
batteryless RFID tag that can be disposed if required and
does not require maintenance re-charging batteries, the sensor
required disinfection or thorough cleaning because of possible
exposure to body fluids or infection control.

Our results are higher in comparison to studies with body
worn batteryless CRFID devices with a high quality 3D
accelerometer sensor evaluated with hospitalized older peo-
ple [18]. Whilst the high resolution accelerometer provided
more information, the RF powering issues from various pos-
tures from older people and movement such as rolling out of
bed by patients resulted in highly sparse data streams. As a
consequence, the results show a relatively larger number of
false positives compared to our study (66.85% vs. ours 86%).

Limitations: Although our results are promising, our study
is not without limitations. During the pilot study, experiments
were conducted for few hours using broadly scripted activity
routines. Therefore, it is important to validate the results using
longer duration trials (such as days opposed to hours), at night
as well as daytime. Additionally, we have not evaluated the
mean time before failure of the mechanical switch in the ID-
Sensor.

While the ID-Sensor is low cost and has the potential for
disposability and textile integration, deploying RFID reader
and antenna infrastructure across a hospital is costly and
was not discussed here. However, RFID infrastructure (which
consists of RFID antennas and readers) is increasingly being
deployed in hospitals for patient and asset tracking [42].
Hence, such existing infrastructure is envisioned to be also
utilized for patient activity monitoring using an ID-Sensor.
Future Work: We leave for future work: i) performance
evaluation with a sensor integrated hospital gown; and ii) the
use of two ID-Sensor tags over both right and left shoulders of
a patient. As a result of the additional information, we expect
the tag reading rate to improve and consequently the number of
missed tag readings to reduce further to yield higher bed-exit
event recognition performance. Further, to establish efficacy,
it is necessary to evaluate our approach using a larger study
such as a randomised controlled trial.
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