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Abstract—Providing city navigation instructions to people with
motion disabilities requires the knowledge of urban features like
curb ramps, steps or other obstacles along the way. Since these
urban features are not available from maps and change in time,
crowdsourcing this information from end-users is a scalable and
promising solution. Our preliminary study on wheelchair users
shows that an automatic crowdsourcing mechanism is needed,
avoiding users’ involvement.

In this contribution we present a solution to crowdsource
urban features from inertial sensors installed on a wheelchair.
Activity recognition techniques based on decision trees are used to
process the sensors data stream. Experimental results, conducted
with data acquired from 10 real wheelchair users navigating in
an outdoor environment show that our solution is effective in
detecting urban features with precision around 0.9, while it is
less reliable when classifying some fine-grained urban feature
characteristics, like a step height. The experimental results also
present our investigation aimed at identifying the best parameters
for the given problem, which include number, position and type
of inertial sensors, classifier type, segmentation parameters, etc.

Index Terms—Motion disabilities, activity recognition, urban
navigation

I. INTRODUCTION

Modern navigation systems compute the route depending on
the user’s current mean of transport. These systems can com-
pute the route for users moving by cars, public transportation,
foot and others. However, there is no specific support for users
with limited mobility, like wheelchair users. To the best of our
knowledge, only Google Maps provides some support in terms
of information about accessibility in public transportation and
limited to some cities1. While this is surely a useful service
for some users, it addresses a small part of the overall mobility
problem by wheelchair users [1].

A major problem, that emerged during an interview with
five wheelchair users living in Milan (Italy), is that a person
moving on a wheelchair does not know in advance which
obstacles she/he will face along a route. For example, even if
curb ramps are commonly available at intersections, sometimes
they can be missing or occluded by road work. According to
interviewed users, these problems are so frequent and their
effects are so frustrating that they declare to be reluctant to
move along unknown routes.

1https://goo.gl/f5BeFc

To address these issues we are currently developing the
Moving Wheels navigation system that aims at supporting
mobility of people with disabilities by guiding them on routes
that are personalized according to their needs. For example,
consider a user with an electric wheelchair that is unable to
climb steps; for this user, the system will compute routes
where curb ramps are available.

While the problem of offering personalized navigation in-
structions to people with disabilities has been addressed before
in the literature (see e.g., [2], [3]), and can be adapted to
this application, a critical challenge in Moving Wheels is to
acquire detailed information about urban features in the form
of obstacles (e.g., a step) and accessibility elements (e.g., a
curb ramp). This paper focuses on this challenge and presents
a solution to automatically recognize urban features from the
movement of the users themselves: while a user moves in the
environment on a wheelchair (e.g., climbs up a ramp) her/his
mobile device acquires movement information from inertial
sensors and automatically detects the urban feature (i.e., the
curb ramp). As future work, we intend to design a system
to automatically share this information so that it can be used
when computing the route for other users. This is a form of
data crowdsourcing that does not require user intervention.

This paper has three main contributions. First, it describes
Moving Wheels, focusing on the definition of the novel
and challenging problem of detecting urban features from
wheelchair movements. Second, it illustrates the technical
solution to recognize urban features that includes data acquisi-
tion, labeling, features extraction, and classification with a su-
pervised machine learning technique. Third, the paper presents
the results of an extensive experimental evaluation of the pro-
posed technique based on data acquired from wheelchair users
in an outdoor environment. Results show which algorithms
and which parameters provide the best accuracy, but most
importantly they validate the solution with recognition rates
higher than 80% for several important urban features.

II. THE Moving Wheels SYSTEM

Moving Wheels is a context-aware assistive navigation sys-
tem being developed by the EveryWare Lab in Milan with
two main objectives: first, to provide navigation instructions
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to people with disabilities guiding them along routes that are
personalized according to their needs. To compute these routes,
Moving Wheels needs detailed information not only about the
road network but also about the urban features that may be an
obstacle for the navigation. The acquisition of this information
is the second objective of Moving Wheels.

A mobile client, similar to a traditional navigation app,
guides end-users from a start position (generally their current
position) to a target destination with a main difference with
respect to other solutions: it allows end-users to finely tune
preferences with respect to classes of urban features depending
on their (dis)abilities. For each class, the user can specify
whether the urban features in that class should be avoided
or not. A third option is available as well: “avoid if possible”
means that the user is able to deal with that urban feature, but
this costs some effort. Consider the following example:

• small-step-up: avoid if possible
• small-step-down: no problem
• medium-step-up: avoid
• medium-step-down: avoid if possible

The above preferences capture the fact that the user is not
able (or willing) to climb up steps of medium height. Vice
versa, descending a short step is not a problem for this user.
Also, the user would prefer to avoid to climb down steps of
medium height and to climb up short steps.

The Moving Wheels service performs the route computa-
tions requested by the mobile client. When computing a route,
Moving Wheels will avoid all urban features marked as “avoid”
and will try to balance the route length with the number of
urban features marked as “avoid if possible”. For example,
consider two alternative routes: one is 200m long with one
urban feature marked as “avoid if possible” while the other is
1.5km with no urban features marked as “avoid if possible”.
In this case the system will automatically suggest the former
route, as it is much shorter. In other cases the system may
automatically suggest a slightly longer route, if it has less
features marked as “avoid if possible”. When there is not a
stark difference between two or more routes, the system allows
the user to select his/her preferred route.

On the server side Moving Wheels represents the road
network as a directed graph in which each edge is labeled
with the urban features that a user will encounter by moving
along that edge, as exemplified in Figure 1.
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curb 
ramp 
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Fig. 1. Road network representation.

A major challenge in Moving Wheels is how to acquire
the knowledge about the relevant urban features (e.g., steps,

ramps) that is needed to populate the graph. We are currently
considering these sources:

• existing geo-referenced data stores, including public (e.g.,
traffic lights from open street map) and private ones (list
of curbs ramps from the municipality);

• data annotated by human actors, such as employees,
volunteers or end-users, that visit a place either physically
or virtually (e.g., looking at Google street view images);

• data automatically extracted from geo-spatial image
databases (e.g., Google street view), adopting computer-
vision techniques, similarly to those proposed in [4].

Each of the above solutions has advantages and limitations
with respect to a number of factors, including cost (e.g.,
manual annotation by employees can be costly), scalability
(e.g., acquiring data from different municipalities incurs into
scalability issues), reliability (e.g, the technique proposed in
[4] correctly identifies 93% of zebra crossings), maintenance
and types of urban features that can be detected (e.g., some
features, like zebra crossings, are easier to detect with com-
puter vision, while others, like the inclination of a curb ramp,
are harder to detect).

This contribution focuses on crowdsourcing data from end-
users (i.e., people with disabilities). This approach has many
advantages: it is scalable, costless, and it keeps information
up to date. Since our studies revealed that these users are not
really keen to manually enter data or have difficulties doing
so, in this paper we show how Moving wheels could collect
data about urban features by using sensors, without end-user
intervention. For example pedestrian crossings can be detected
from the camera (e.g., a wearable one) and acoustic traffic
signals can be detected from the microphone. We currently
focus on urban features that can be detected with inertial
sensors mounted on a wheelchair, which include steps, ramps
and rough roads.

III. PROBLEM ANALYSIS

During the analysis on the Moving Wheels system we
conducted informal interviews with two set of users: those
using a electric wheelchair and those using a traditional one.
The interviews were aimed at better understanding the mobility
problems of wheelchair users. We report in the following some
observations that are relevant to this contribution.

A. Mobility

There are basically two classes of wheelchairs used for
urban mobility2: electric wheelchair and traditional ones. The
latter can be propelled in three ways: (a) self-propelled when
the user sitting on the wheelchair use his/her arms to move the
wheels, (b) attendant-propelled, when a caregiver pushes the
wheelchair and (c) electric-propelled in which an electric de-
vice is attached to the wheelchair to provide motion. Figure 2
shows some examples of wheelchairs.

Generally, electric wheelchairs are used by people who are
not able to use a traditional wheelchair (e.g., tetraplegics),

2A number of other models are used for indoor use (e.g., in the hospitals),
sport and outdoor.
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(a) Electric wheelchair. (b) Self-propelled traditional
wheelchair.

(c) Electric-propelled traditional
wheelchair.

(d) Sensors position.

Fig. 2. Wheelchairs: types, propulsion modes and sensors position.

while traditional wheelchair are used by people who are able
to use a self-propelled traditional wheelchair and that possibly
attach an external electric device when really needed.

The ability to move in an urban environment and to face
obstacles strongly depends on the wheelchair type, on how it
is propelled and on the user’s abilities. For example, climbing
up a steep ramp is generally not a problem with electric
wheelchair, while it can be hard for a self-propelled wheelchair
if the user is not well trained. Vice versa, climbing up a step
can be impossible with electric wheelchair, while it is gen-
erally easier with a electric-propelled traditional wheelchair,
or with a self-propelled wheelchair if the user is well trained.
In particular users of traditional wheelchair learn to balance
themselves on the rear wheels when facing some obstacles:
this position, called balancing, allows them to climb up and
down from steps and is frequently used in other situations in
which it is preferable that the front wheels do not touch the
ground, like when moving on a rough road.

In this paper we focus on detecting urban features from self-
propelled traditional wheelchair. We believe that the method-
ology and technique we propose in this paper can be easily
adapted to the other cases.

B. Sensor data acquisition

Since smartphones include inertial sensors, they could be
considered as a data source. For this reason during the in-
terview we asked the participants where they usually keep
their smartphone while moving on the wheelchair. It emerges
that there are heterogeneous habits: some people using electric
wheelchair have a holder (like the tablet in the red circle in
Figure 2a), vice versa a common choice among traditional
wheelchair users is to store the smartphone in a bag positioned
on the rear side of the wheelchair back (like in Figure 2b).

Our preliminary results show that when the smartphone is
not firmly attached to the wheelchair frame (e.g., when it
is stored in the bag) the collected inertial data is noisy and
recognition is harder. For example, consider Figure 3 that
shows accelerometer data recorded by a smartphone stored
in a bag while the user is moving on a smooth surface. We
can observe that, while the user is only accelerating along the
frontal direction, spikes are observable on all three axes. This
is due to the fact that the bag keeps swinging while the user

Fig. 3. Sensor data acquired from a smartphone stored in a bag.

moves and the smartphone inside the bag moves and rotates
in all directions.

For this reason the technique proposed in this contribution is
designed to use data acquired from sensors that are attached
to the wheelchair frame and whose position and orientation
are known. We believe that this setting is realistic, since we
expect that smart wheelchairs, equipped with inertial sensors,
will become common in the next years [5].

C. The urban features of interest

The main focus of the interviews was to understand the
challenges that arise when moving with a wheelchair in
a urban environment. The following environmental features
emerged to be relevant for wheelchair users:

• steps: their height and whether they should be climbed
up or down;

• ramps: their inclination and whether they should be
climbed up or down;

• pavement: whether it is flat or inclined (up or down and
how much) and whether it is a smooth pavement, asphalt
or dirt road;

• bumps and gutters: their height;
• movement aids: like lifts and stairlift.
Based on the observations emerging from the interviews we

derived the hierarchical set of labels shown in Figure 4. Each
label corresponds to a user’s action that discloses the presence
of a urban feature. For example obstacle-step-up-M
indicates that the user climbed up a step of medium height.
By knowing the user’s position and direction at that time we
can recognize the urban feature (the step), its characteristics
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up downM LH M LH up down S A D LS ... HD LS ... HD

M LH M LH M LH M LH

gutter step bump ramp turnabout plain  ascending  descending  lift stairlift

still obstacle gait movement aid

root

Fig. 4. Labels’ hierarchy as emerging from the analysis. H=High, M=Medium, L=Low, S=Smooth, A=Asphalt-like, D=Dirt road, LS=Low and Smooth, etc.

(medium height) and its orientation (whether it should be
climbed up or down when following the same route as the
user).

There are two labels that are exceptions as they do not dis-
close a urban feature: still and turnabout. The former
indicates that the user is not moving, so there is no urban
feature to detect. The latter instead does not disclose an exact
urban feature but can be used to infer that the user cannot
overcome an obstacle and hence can lead to infer a generic
accessibility issues when the same behaviour is observed by
several users in the same location.

The first level of labels contains: obstacle, gait,
movement aid and still. Obstacle represents events with
a short temporal duration (intuitively between a fraction of
a second and few seconds) while the other events have a
longer duration. We discretize step, bumps and gutter heights
as well as ramps inclination into three classes (high, medium,
low). Similarly, we use three classes for surface smoothness:
smooth, asphalt-like and dirt road. When the user is moving
along an ascending or descending path, we aim at classifying
all combinations of inclination (high, medium, low) and of
surface smoothness (smooth, asphalt-like and dirt road).

IV. AUTOMATIC DETECTION TECHNIQUE

In order to recognize the urban features of interest, we use
machine learning techniques adapting to our specific domain
an approach widely used for sensor-based human activity
recognition. The current implementation of our method relies
on batch learning: data are first acquired from wheelchair
users, then manually annotated with the ground truth, and
finally used to train a supervised classifier. Once the recogni-
tion model is trained, our system can detect wheelchair users’
actions in real-time.

Section V describes how we collected and annotated sensors
data. In the following of this section we describe the main
steps of the data management process that enables supervised
classification.

A. Data pre-processing

The user’s wheelchair is equipped with several devices,
placed in different positions with predefined orientation, each

acquiring data from various inertial sensors. Data acquired
from these sensors is pre-processed in three main steps: data
cleaning, fusion and segmentation.

A common technique for data cleaning is data smoothing,
which aims at reducing the intrinsic noise of inertial sensor
measurements [6]. Many techniques have been adopted in
the literature (e.g., median filter). However, in our domain
it emerged that data smoothing may actually decrease the
recognition rate. We believe that the reason is that some
obstacles are crossed in short time and they result in peaks
in sensor measurements. Smoothing those peaks removes im-
portant information that is needed to correctly detect obstacles.
Hence, in our application cleaning has been mostly focused
on identifying unreliable sensors and real outlier data.

Data fusion consists in temporally aligning the data streams
originated by each sensor. We achieve this by acquiring sensor
data from a single gateway (e.g., a smartphone in our case)
and timestamping the data with the gateway clock.

After data fusion, sensor data is segmented using a temporal
sliding window approach. The application of this method is
influenced by two parameters: window temporal length l in
seconds, and windows overlap factor o in percentage. Despite
being a quite standard and simple segmentation technique, it
proved to be effective in our application domain. Figure 5
shows an example of data fusion and segmentation with l =
2sec and o = 50%.

B. Segments labeling

The wheelchair movements (we also called them activities)
that we need to detect have different duration, from a fraction
of a second for obstacles to several tens of seconds, for gait or
still. Figure 6 shows an example: a step is performed between
two gait activities.

As usual for supervised learning approaches we faced the
problem of how to assign a ground truth label to each segment.
A possibility is to use very short segments, so that each
one temporally overlaps a single activity. However, as we
experimentally show, using very short segments results in
poor classification quality. On the other hand, by using longer
segments it is possible that a user performs more than one
activity during a single segment, as shown in Figure 6 (see the
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Fig. 6. Labelling approaches.

second segment). In this case a solution is to label a segment
according to the prevalent activity for that segment (the one
that is performed more than any other during the segment
duration). We call this the majority approach and an example
of its application is shown in Figure 6.

The majority approach turned out not to be effective in our
domain due to the fact that obstacles are generally crossed in
a very short time (e.g., half a second). Indeed, since segments
have a length in the order of seconds, none of them is labeled
as an obstacle (as in Figure 6). To address this issue we adopt
a priority labeling approach. The intuition is that obstacles are
particularly relevant in our domain, so we give them an higher
priority when labeling a segment: if a segment overlaps with
an obstacle at least for a given percentage p of the segment
length, then we label the segment as obstacle, independently
from the other labels. This is shown in Figure 6: the second
segment has an overlap of 25% with a step (a type of obstacle),
so, assuming p = 25%, the segment is labelled with step.

C. Feature Extraction

From each segment, we extract several statistical features
which are widely adopted in the literature for activity recog-
nition from inertial sensors [7]. In particular we use the
following features:

• For each axis of each sensor: minimum, maximum, dif-
ference between maximum and minimum, mean, standard
deviation, variance, median, root mean square, kurtosis,
skewness, zero crossing rate, number of peaks and energy;

• For each pair of axis of a given sensor: Pearson correla-
tion and coefficient cross correlation

• For all axes of a given sensor: magnitude.
Overall, we compute 46 features for each 3-axis inertial sensor.
For instance, considering that in our experimental setup we
used three devices with three 3-axis sensors each, a total of
46× 3× 3 = 414 features were used.

D. Supervised Classification

In order to classify urban features, we rely on supervised
machine learning algorithms. We experimented with state-
of-the-art generative and discriminative classifiers including
Multinomial Naive Bayes, SVM, Random Forest and Multi-
layer Perceptron. As we show in the experiments, Random
Forest resulted to have the highest recognition rate.

Given that our set of labels is naturally represented as
a hierarchy, we designed and implemented a hierarchical
Random Forest classifier [8]. In this approach a separate
classifier is used for each internal node of the hierarchy tree.
A segment is first classified by the root classifier as belonging
to one of the first level labels (for example it is labeled as
obstacle), and then considered by a specialized classifier in
order to get a label from the second level (for example as
bump), and further descending the hierarchy until eventually
being assigned a label corresponding to a leaf (for example
a high bump). We compared this classifier with a flat version
with experimental results reported in Section VI.

V. TRAINING DATA ACQUISITION

In order to validate our method, we acquired a training set
of urban features collected by 10 actual wheelchair users that
volunteered to participate in our experiments. In this section
we show our experimental setup, the acquisition protocol and
we describe the collected dataset.

A. Experimental setup

For the sake of this work, we used MbientLab’s Meta-
MotionR devices3. A MetaMotionR is a multi-sensor board
which communicates through Bluetooth Low Energy. Among
the several sensors mounted on the board, we use data from
accelerometer, gyroscope and magnetometer. As Figure 2d
shows, we placed 5 of those devices in different wheelchair’s
positions: front-left, front-right, rear-left, rear-right and rear-
center. Due to technical problems with the devices we col-
lected complete data recordings only from three of them (front-
left, rear-right and rear-center). Partial recording from the
other two sensors was discarded during data cleaning. Each
device streams sensor data to a smartphone at 25Hz. The
smartphone stores this information using the MetaBase appli-
cation4 assigning to each incoming sensor data the smartphone
timestamp. Moreover, we also collected sensor data produced
by a different smartphone placed on a bag hanging on the
wheelchair back (see Figure 2b). Since the data collected by
this second smartphone turned out to be highly noisy, we also
ignored this data stream in the following analysis.

3https://mbientlab.com/product/metamotionr/
4https://mbientlab.com/tutorials/Apps.html
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B. Data acquisition

Experiments were conducted at Spazio Vita, a Non Profit
Organization (NPO) based in Milan, Italy, that supports people
with motion disabilities. This NPO owns an outdoor training
area which includes common urban obstacles, like steps,
ascents, etc. The training area is closed to traffic, so that
wheelchair users can practice moving in a urban environment
without hazards.

Data collection involved 10 users of traditional wheelchairs
that self-propelled the wheelchair during the experimental
session. For each individual, the data acquisition process
includes the following steps: a) take a video where the
individual expresses the consent for data acquisition and
analysis, b) MetaMotionR are deployed on the wheelchair,
c) the MetaBase application on a smartphone is started in
order to collect sensor data, d) the user crosses a predefined
route while being video recorded. The route consisted in going
on a dirt road, going on asphalt, being still, doing turnabout,
going up and down on inclined roads with different slopes
(high, medium and low), and going up and down on steps
with different heights (high, medium and low).

During the data acquisition we noticed a high variability of
ways of crossing urban features between different users. For
instance, not all users were able to go up or down all steps
(e.g., going up a high step is difficult for many users). More-
over, some users cross difficult urban features (like descents,
dirt roads and steps) in the balancing position, while others
do not. We also noticed that the speed at which wheelchair
users cross urban features is highly variable, mainly based on
the disability and health conditions of the subject.

For each individual we recorded between 8 and 12 minutes
of data. The overall time required to acquire data from each
user was between 20 an 30 minutes, mainly due to the time
required to deploy the devices on the wheelchair. In the
following we call session the data acquired from an individual.

C. Data annotation and cleaning

Data annotation was performed offline, thanks to video
recordings. In order to synchronize sensor data with video
recordings we collected the sensors data from the same
smartphone used to record the experiments and we used an
application that prints the device time on each frame5. Actual
data annotation was performed using Anvil [9], a free video
annotation tool originally developed for gesture recognition.

As we mentioned above, many activities annotated with
a given label are actually performed in different ways (i.e.,
with different physical movements). In general we expect our
system to be robust against variability and indeed we have
several examples of actions performed in different ways in our
dataset. However we removed a few seconds of data recording
in those cases in which a given activity is performed with a
physical movement that is not repeated in the dataset. There
are just two of these cases: i) a user descended a step while
moving backward and, ii) a user climbed up a step while

5http://www.timestampcamera.com/

pulling himself with the handrail. Finally, we also excluded
from the dataset all the occurrences of the urban feature step up
high, which was performed only 4 times in the whole dataset
due to its intrinsic difficulty.

D. Dataset description

Not all urban features identified in Section III-C are avail-
able in the environment where we conducted the experiments.
In particular the only available obstacles are the steps, while
there are no bumps or gutters. There are indeed some ramps,
but they are about 8 meters long, so we do not classify them
as obstacles, which should take a short time (e.g., a curb ramp
is an obstacle) to cross, but instead we classify them as gait-
ascending or gait-descending. The urban features that we have
been able to collect are represented in Figure 7.

up down

S A DM L M LH

step

turnabout plain  ascending  descending 

still gait

root 

M L M L

leaf level

intermediate level

first level

Fig. 7. Hierarchy of labels collected during experiments. H=High,
M=Medium, L=Low, S=Smooth, A=Asphalt-like, D=Dirt road.

TABLE I
OVERALL NUMBER OF INSTANCES AND SECONDS OF SENSOR DATA

RECORDED FOR EACH URBAN FEATURE

Urban Feature #instances #seconds
Step down high 9 8s

Step down medium 18 14s
Step up medium 14 15s

Step up low 34 27s
Step down low 43 31s

Gait plain on dirt road 16 218s
Gait descendent medium slope 48 230s
Gait ascendant medium slope 43 248s

Gait descendent low slope 54 252s
Turnabout 119 295s

Gait ascendant low slope 53 304s
Gait plain indoor 27 362s

Stop 63 628s
Gait plain on asphalt-like 368 2821s

Table I shows some details of the collected data. From this
table emerges that the dataset is very unbalanced. This is due
to the fact that many users were not able to cross specific urban
features (e.g. high/medium steps) and those who were actually
able could not repeat them several times, as these activities are
physically demanding. Moreover, the time required to cross an
obstacle like a step is often very short (e.g., half a second).
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VI. EXPERIMENTAL EVALUATION

A. Evaluation methodology

We measure the quality of our urban feature detection
system by analyzing the confusion matrix and computing the
standard metrics of precision, recall and F1-score. We adopt a
leave-one-subject-out cross validation method: at each fold we
use nine sessions (one for each individual) to train our model,
using the remaining one to test it.

Since we consider a hierarchy of labels, we are interested in
investigating the quality of our classifier at different levels of
our hierarchy. Indeed, while it would be desirable to accurately
detect urban features at the finest granularity (e.g., distinguish
a high, medium and low step-down), we are also interested in
the recognition rate for coarser-grained urban features, like, for
example, whether an obstacle is present or not, or whether a
step has been climbed up or down. For this reason we identify
three groups of nodes in our hierarchy as shown in Figure 1:
coarse-grained, mid-grained and fine-grained.

B. Configuration yielding the best results

We tested various classifiers and a number of parameters
trying to identify those yielding the best results. While the
results of these tests are illustrated later in this section, the
configuration that gave the best overall results is the following:

• a flat Random Forest classifier;
• all available sensor data (3 devices, each with accelerom-

eter, gyroscope and magnetometer);
• a window size of l = 2sec and overlap o = 50%;
• a priority approach to segments labelling with p = 20%;

In the following of this section we report the results obtained
with this configuration, unless differently specified.

Considering the detection of coarse-grained activities (see
Table II) the classifier is overall reliable, with particularly good
results for the detection of the gait and still activities. At
a finer level (see Table III), results present large differences
among the various activities. Indeed, while the classifier can
generally correctly distinguish a step-up from a step-down, it is
much less reliable for gait-ascending and gait-descending. The
reason, shown in the confusion matrix reported in Figure 8, is
that both labels are frequently classified as gait-plain. More
generally, from the confusion matrix it emerges that all the
activities are sometimes confused with gait-plain. We believe
that this is due to the fact that the dataset is unbalanced and
gait-plain has a much larger support with respect to the other
activities (see Table I).

TABLE II
CLASSIFICATION RATE AT THE COARSE-GRAINED LEVEL.

Class Precision Recall F1 score
Obstacle 0.893 0.814 0.851

Gait 0.978 0.986 0.981
Still 0.935 0.912 0.923

Considering fine-grained activities (Table IV), the classifier
is only partially reliable. This is due to the fact that, at this

TABLE III
CLASSIFICATION RATE AT THE MID-GRAINED LEVEL (still IS OMITTED)

Class Precision Recall F1 score
Step-up 0.847 0.727 0.783

Step-down 0.892 0.847 0.869
Plain-gait 0.807 0.945 0.871

Gait-ascending 0.833 0.568 0.675
Gait-descending 0.737 0.308 0.434
Gait-turnabout 0.806 0.669 0.731

Fig. 8. Confusion matrix at the mid-grained level. Indexes: uf1=gait-
turnabout, uf2=gait-plain, uf3=gait-ascending, uf4=gait-descending,
uf5=step-up, uf6=step-down, uf7=still.

granularity, the classifier is often not effective in distinguishing
two sibling labels. Consider for example step-down: while this
label is recognized with high precision and recall, its child
step-down-medium is not; this is due to the fact that in about
50% of the cases step-down-medium is actually classified as
step-down-low.

TABLE IV
CLASSIFICATION RATE AT THE FINE-GRAINED LEVEL (still AND

gait-turnabout ARE OMITTED)

Class Precision Recall F1 score
Step-up-medium 0.688 0.379 0.489

Step-up-low 0.725 0.806 0.763
Step-down-high 0.737 0.737 0.737

Step-down-medium 0.500 0.371 0.426
Step-down-low 0.647 0.663 0.655

Gait-plain-smooth 0.621 0.254 0.360
Gait-plain-asphalt-like 0.709 0.935 0.806

Gait-plain-dirt-road 0.625 0.320 0.423
Gait-ascending-medium 0.803 0.677 0.735

Gait-ascending-low 0.750 0.408 0.529
Gait-descending-medium 0.590 0.385 0.466

Gait-descending-low 0.931 0.172 0.290

C. Effects of parameters and alternative configurations

As observed in Section IV, we considered two segment
labelling techniques. Figure 9a shows a comparison of the
majority and priority labeling techniques for different values
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(a) Majority vs priority segment labeling varying l. (b) Impact of parameter p. (c) Impact of window size.

Fig. 9. Effects of parameters and alternative configurations.

of the segment length. We can observe that, for small values of
l (in the order of half a second), the two techniques provide
almost identical results. For larger values, the performance
with the majority approach rapidly decreases, because the
number of segments labeled as obstacle decreases. Vice versa,
with the priority approach, segments of about 2s give better
performance.

The priority approach depends on the parameter p. Fig-
ure 9b shows that the detection rate of still and gait is basically
not affected by p. Instead, step detection increases between 0%
and 20% and then it rapidly decreases. This is due to the fact
that, for larger values of p, the priority approach is similar to
the majority approach.

Figure 9c shows how the recognition rate is affected by the
window size l at different levels of our hierarchy. The best
results are obtained with l = 2. Indeed, for lower values the
performance rapidly decreases at all three levels. Instead, for
values of l larger than 2 the performance degrades especially
for the mid-grained and fine-grained level.

Our experiments show that the overlap factor o has little
impact on the recognition rate at all levels. Slightly better
results are achieved with o = 50% and hence we used this
value. Still, since the classifier exhibits similar performance
with o = 0%, this value can be also considered as a possible
choice, as it minimizes the computational costs because for
smaller values of o less segments need to be processed.

Figure 10a shows that the combination of all the available
devices (front-left, rear-center and rear-right) gives the highest
recognition rate. In case a single device is available, it should
be positioned on the rear-center. If two are available, the
best performance is obtained by positioning one on the rear-
center and the other on the front-left. Indeed this configuration
actually gives almost the same results as using three devices.

Considering the contribution of specific sensor types (see
Figure 10b), the best results are obtained by using all the
three we have considered, i.e., accelerometer, gyroscope and
magnetometer. The magnetometer is the least effective when
used alone. Instead, by using accelerometer only, the results
are only slightly worse than with all the sensors. The same
holds for the gyroscope. Still, coupling the magnetometer with
the other sensors does actually improve the recognition rate,
in particular when it is used together with both accelerometer
and gyroscope.

Figure 10c shows the performance of different classifiers. A
flat random forest provides the best result, in term of average
F1 score, both among coarse and fine grained labels. Given the
hierarchical structure of our labels, we expected a hierarchical
classifer to outperform the others, but actually hierarchical
random forest resulted to have almost the same performance
(but slightly worse) than the flat version. The same holds for
multinomial naive bayes. Two classifiers provide clearly worse
results: support vector machines and multi-layer perceptron.
We believe that this is due to the relatively small training set.

Considering that the training set is highly unbalanced, we
expected that a data balancing technique could improve the
performance. In particular, we experimented a) Random Forest
with balanced class weights and b) well-known techniques to
balance the dataset with both oversampling and undersampling
[10]. In both cases, unexpectedly, the balancing techniques did
not improve the recognition rate.

VII. RELATED WORK

A number of commercial solutions have been proposed to
detect urban features from images e.g., Mappillary6 or to
support people with disabilities during navigation. Similarly
to Moving Wheels, some of these services provide person-
alized routes. The main limitation of these systems is that
they cover relatively small regions; for example Route4U7

can only provide navigation instructions in some parts of
Budapest (Hungary) while Kimap8 only covers a few small
towns in Italy. This shows that the main challenge with these
applications is the large scale collection of geo-referenced
information, and indeed our contribution is aimed at mitigating
this problem.

Considering the scientific literature, four main challenges
have been addressed in the field of navigation for people
with disabilities: (a) to compute the user’s position with high
precision [11]–[14], (b) to compute personalized navigation
instructions [2], [3], (c) to effectively convey them (e.g.,
to blind users) [15], [16], and (d) to detect urban features.
This last challenge has been addressed with two different ap-
proaches: crowdsourcing and automatic detection techniques.
With crowdsourcing, information is manually annotated by

6www.mapillary.com
7route4u.org
8www.kimap.it
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(a) Position (FL=front-left, RR=rear-right,
RC=rear-center).
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(b) Type (A=accelerometer, G=Gyroscope,
M=Magnetometer).
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(c) Classifiers (RF=flat random forest,
HRF=hierarchical random forest,
MNB=multinomial naive bayes, MLP=multi-layer
perceptron, SVM=support vector machine).

Fig. 10. Performance varying position and type of inertial sensor as well as the classifier. The charts show the average F1 score for coarse-grained labels.

end users or other stakeholders [17], [18] as in the sidewalk
project9. A well-known problem with crowdsourcing is to
motivate users to contribute since it often requires an explicit
user action. This problem is addressed, among others, by
Liu et al. [19] while designing the WeMap system [20] that,
similarly to Moving Wheels, is aimed at providing accessibility
information about routes and places. Unfortunately, based on
our study, wheelchair users are rarely willing to manually
insert accessibility data. As a consequence, only a small
fraction of the necessary information is provided, it is often
unreliable, and it easily becomes obsolete. Consequently, these
services are rarely useful, according the users we interviewed.

Automatic detection of urban features can be adopted to
overcome the limitations of crowdsourcing. Computer vision
techniques have been shown to be effective to detect some
urban features, like pedestrian crossings and traffic lights,
both from images captured by the device camera [21], [22],
and from satellite images [23]. However, there are other
information, like the inclination of a curb ramp, that are
harder to detect with this approach and hence we believe
that computer vision techniques are complementary to the
solution proposed in this paper. An alternative approach to
automatically detect urban features is to process inertial data
and, to the best of our knowledge, the only solution proposed
in the literature is based on data collected from people walking
in the urban environment [24], while Moving Wheels uses data
from wheelchair users.

The machine learning methods we propose and adapt to our
application are well known in human activity recognition and
have been extensively studied in the literature. Supervised or
semi-supervised classification techniques are usually adopted
to address this problem [7]. Several works proposed to rec-
ognize human activities (walking, running, etc.) by analyzing
data from inertial sensors found in commonly available mobile
devices, like smartphones, smartwatches or wristbands [25]–
[27]. However, activity recognition for wheelchair users is an
application domain with its own peculiarities that has been
only partially investigated. Smart cushions have been proposed
to monitor life-style revealing activities for sedentary subjects

9sidewalk.umiacs.umd.edu

(including wheelchair users) [28]. Inertial sensors have also
been used to detect simple activities to improve GPS-based
localization for both pedestrian and wheelchair users [14].
Differently from those approaches, we rely on inertial sensors
to detect activities which in turn disclose detailed information
about urban features.

VIII. CONCLUSION

We presented Moving Wheels, a urban navigation system
for wheelchair users and we proposed a technical solution for
automatic crowdsourcing of inertial sensor data enabling the
inference of geo-referenced potential obstacles. Our experi-
ments on real data show that the proposed approach is indeed
effective.

Future work will be mainly devoted to scale-up the experi-
ments to a larger set of urban features and to a larger training
set, including routes in the actual city instead of the real but
protected environment used for this work. We also intend to
develop a mobile app implementing the proposed technique
so that classification can be run in real time, which in turn
will allows us to conduct experiments with active learning
techniques.
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