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Abstract—Due to the spread of smartphones, mobile applica-
tions (app) have been widely used in daily life. Several apps which
provide real-world related information (called “local apps”) are
useful for not only tourist but also residents. There is a category
that seems to contain local apps in app market such as “Travel &
Local” in Google Play, but many local apps are categorized into
other categories. Thus, we present a method to classify local apps
based on app market data using deep neural network (DNN). We
leverage the fact that each app is manually labeled by developer
to pre-train the DNN. In addition, we create features from an app
market data because app markets involve multi-modal data such
as app name, category and number of installs. We conducted an
experiment on a real-world dataset crawled from Google Play to
validate the effectiveness of the proposed method. Our evaluation
shows that the proposed method outperforms the baseline method
by 5.5% regarding F1 score.

Index Terms—Local Mobile App, Deep Neural Network, Lo-
cation based services

I. INTRODUCTION

With the rapid adoption of modern smartphones, mobile
applications (app) are being used increasingly in daily life,
and there is a large number of apps in various app markets,
such as Google Play and Apple’s App Store. In an app market,
each app has multi-modal data such as a text description,
screen-shots, manually labeled category1 (e.g. Travel & Local,
Shopping and Education) and rating [1]. Several apps support
the users’ real world activities by providing local, real-world
related information, and such apps are useful for both tourists
and local residents. For example, there are apps for a specific
area (e.g. KYOTO Trip+2 is an app for tourists and resi-
dents in Kyoto), specific spots (e.g. YOKOHAMA WORLD
PORTERS3 is the official app of a shopping mall) and specific
real-world activities (e.g. Tide Chart FREE4 is fishing app).
We refer to such real-world related apps as “local apps”. By
extracting the location name from the app name or description,
a local app can be geolocated to a real-world geographic
location (i.e. latitude and longitude). One of an application
of geolocated local app is recommending local apps based on

1https://support.google.com/googleplay/android-developer/answer/113475
?hl=en

2https://play.google.com/store/apps/details?id=jp.kyoto.pref.visitkyoto&hl
=en

3https://play.google.com/store/apps/details?id=com.ywpapp&hl=en
4https://play.google.com/store/apps/details?id=jp.gr.java conf.hanitaro.tide

&hl=en

the user’s current location. To realize this recommendation,
local apps must be filtered by the “Travel & Local” category
(in the Google Play case) and geographic range. However,
we have discovered that many local apps are categorized into
other categories. For example, the YOKOHAMA WORLD
PORTERS and Tide Chart apps are categorized as “Shopping”
and “Weather”, respectively.

Classifying local apps is important for several mobile app
market stakeholders. For users, local apps support their real-
world activities by providing event information, coupon, etc.
For app developers, an appropriate app category can be rec-
ommended by classifying their app prior to registering the app
to an app market, and an appropriate category help developers
increase the number of users who view their apps.

Classifying local apps is a non-trivial and difficult problem.
One naive method is simply extracting the location name from
the app name or description. For example, if we search apps
whose app name contains “Tokyo”, the search result contains
many non-local apps, such as games and Internet shopping
apps, that do not provide real-world related information. Thus,
this naive method would fail. Another naive method is to
calculate the geographic bias of app usage using app usage
log and location data. However, a cold start problem would
occur when calculating geographic bias because this method
requires a sufficient amount of app usage logs that contain
location data. Therefore, it is important to classify local apps
using only app market data.

In previous studies [2], [3], classifying mobile app was
considered a text classification problem because short text
data, such as an app name and web search snippets, were used
to classify apps. Generally, short text classification faces the
data sparseness problem [2], and a semantic feature (i.e. topic
distribution) and bag-of-words features are used to address this
problem [2], [3]. However, the effectiveness of such methods
is limited.

Thus, we tackle this problem by exploiting word em-
beddings and a deep Convolutional Neural Network (CNN)
which have achieved high text classification accuracy [4]–
[6]. However, deep learning generally requires a significant
amount of training data. In fields in which deep learning
models have shown success, such as image recognition, there
is a large number of publicly available annotated data such as
ImageNet [7]. On the other hand, there is no available public
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data suitable for deep learning relative to the app classification
problem. Therefore, we focus on the fact that all mobile
apps are manually categorized into pre-defined categories by
developers upon release. We exploit this as manually annotated
data to pre-train a deep learning model and efficiently fine-
tune the model using a small amount of annotated data for
local app classification. In addition, app markets have multi-
modal data; thus the propose method extracts features from
text descriptions, number of installs, and app category, etc.
to classify local apps. Finally, deep learning is suitable for
integrating multi-modal data for classification [8]. Therefore,
we integrate features from text using CNN and other multi-
modal data. In this study, we conducted an experiment on a
real-world dataset crawled from Google Play to validate the
effectiveness of the proposed method.

The contributions of this study are summarized as follows.
• We propose a learning method for local app classification

using app category classification as pre-training. The
proposed method uses word embeddings and a deep CNN
for local app classification. (Section. III-C)

• By integrating features extracted from the text description
by the CNN and multi-modal features, we build a deep
learning-based classifier for local mobile apps. (Section.
III-B, III-D)

• We conduct an experiment on a real-world dataset col-
lected from Google Play to validate the effectiveness of
the proposed method. The experimental results demon-
strate that the proposed method outperforms a state-of-
the-art method [3]. The F1 score of the proposed method
is higher than the baseline by 5.5%. (Section. IV)

This paper is organized as follows. In section 2, we overview
the related work for mobile app analysis and deep learning for
text classification. We explain the proposed method in section
III. Section IV describes the evaluation and application for
industry. Finally, we conclude this paper in Section V.

II. RELATED WORK

A. Mobile App Market Analysis and Classification

Several studies have examined mobile app classification.
For example, Zhu et al. classified mobile apps based on app
name and web search snippets queried by app name [2]. They
considered an app name and search snippet as a document.
As mentioned in Section I, app names and search snippets
are short text; thus, the data sparseness problem can arise
when using such short text data. Thus, Zhu et al. used both
term frequency (bag-of-words) and topic distribution based on
Latent Dirichlet Allocation [9] as a textual features. In addition
to textual features, they used real-world context log data, such
as time or location information. Finally, they classified mobile
apps using Maximum Entropy Model with textual features
(term frequency and topic distribution) and real-world context
features. Li et al. [3] classified mobile apps using a Naive
Bayes Classifier and the same features used by Zhu et al.

Chen et al. proposed a tagging method for mobile app
based on app market data [10]. In their method, ten kinds

① Name: KYOTO Trip+	② Category: Travel & Local	

③ Description: “KYOTO Trip+” is an official application offering ...	

④ # of installs: 5,000+	 ⑤ Updated : July 13 2017	

Fig. 1. Example of app market data

of modalities from an app market, such as app name, app
description, ratings and screenshot were used as features
for tagging, and tagging was performed by calculating the
similarity between a tagged mobile app and the target mobile
app.

B. Deep Learning for Text Classification

In the past few years, CNNs have demonstrated state-of-the-
art results with natural language processing tasks, including
text classification [4], [6] and sentiment analysis [5]. In
these studies, word embedding is first applied, and then an
embedding vector is used for the CNN. Word embedding
frameworks such as word2vec [11], Glove [12] and fastText
[13] are typically pre-trained using public data (e.g. Wikipedia)
or a task-specific corpus [6]. In a study by Lee et al. [6], one
of the main research contribution was a comparison of the
performance of different datasets for pre-training relative to
medical documents to detect adverse drug events in tweets.
The results demonstrated that task-specific pre-training was
superior to fastText trained on Twitter. Thus, data selection for
pre-training is an important consideration for text classification
using a CNN.

To the best of our knowledge, our study differs from
previously proposed methods as follows.

• Existing studies can be divided as follows: (1) classifying
mobile apps by short text classification based on app
name, description or app usage log, and (2) tagging
mobile apps based on muti-modal features. Thus, this
study is the first to classify local mobile apps.

• No existing study considered text classification using a
CNN that exploits Google Play data for pre-training.

III. PROPOSED METHOD

In this section, we describe the proposed feature generation
and classifier training methods. We use the following types of
features in the proposed method.

1) Features based on various app market modalities.
2) Textual features extracted from description using a CNN.

Note that we evaluated the proposed method using data
crawled from Google Play; thus, we explain the feature
generation method in the context of Google Play.

A. App Market Data

Figure 1 shows an example of app market data. Here, the
app market provides app name, description, number of installs,
etc. The names of modalities are shown in red. Note that we
generate features based on the app name, category, description,
number of installs, and updated modalities.
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TABLE I
LIST OF HAND-CRAFTED MULTI-MODAL FEATURES

Source Feature
App name # of occurrences of prefecture names
App name # of occurrences of location names
Description # of occurrences of prefecture names
Description # of occurrences of location names
Category Category
# of installs # of installs (categorical)
Updated date Updated year

B. Multi-modal features

Table I shows the features used in the proposed method. We
extract the location name from the app name and description,
and we use the number of location names as a feature based
on the hypothesis that many place names appear in the names
and descriptions of local apps. Although there is no explicit
local app category, various categories, such as travel, can
be considered similar to a local app; therefore we use app
category as a feature. We adopt the number of installs under
the hypothesis that the number of users of apps used in a
specific area is less than that used nationwide. In Google
Play, the number of install is represented as a range, such as
“1,000-5,000” or “10,000-50,000”. Thus, we treat the number
of install as categorical feature.

C. Feature extraction using CNN

We use a CNN to extract effective textual features (CNN-
feature) from app description. Generally, collecting training
data for deep learning is very expensive because deep learn-
ing, including CNNs, requires vast amounts of training data.
Therefore, semi-supervised or transfer learning methods are
often used. To construct a high-performance classifier with
such methods, the model is pre-trained using publicly available
data and fine-tuned using a small amount of training data. For
example, for image recognition, the ImageNet [7] database
is used to pre-train various tasks [14]. However, there is no
publicly available dataset for training the app classification
task. Therefore, we focus on the mobile app registration pro-
cedure. When a developer registers their app in an app market,
they must manually select a label from pre-defined categories.
Thus, we can collect large-scale manually annotated data from
an app market. In this study, pre-training is performed by
estimating the app category from the app description, and fine-
tuning is performed by classifying local apps based on the
app descriptions. Our intuition for using app category which
is manually labeled by app developer is that because several
categories such as “Maps & Navigation” and “Travel & Local”
are strongly related to local app, we can efficiently learn the
deep learning model by classifying these app categories as
pre-training.

The CNN architecture used in the proposed method is
shown in Figure 2(a). In the first embedding layer, each
word in the app description is converted into a distribution
representation. Then, three convolution layers and three max

(a) CNN Pre-training	

Embedding	

Conv 1D	

Maxpooling	

Conv 1D	

Maxpooling	

Conv 1D	

Maxpooling	

Flatten	

Full Connect	

description	

・・・	

number of categories	

(b) Proposed Model	

Embedding	

Conv 1D	

Maxpooling	

Conv 1D	

Maxpooling	

Conv 1D	

Maxpooling	

Flatten	

Full Connect	

Full Connect	

Full Connect	

description	

Multi-modal	
feature	

Full Connect	

Fig. 2. Structure of deep neural network

pooling layers are added. Finally, category classification is
performed by a fully-connected layer via a flatten layer.
Dropout [15] is used for generalization in the fully-connected
layer. The embedding layer can be initialized by the distributed
representation using, for example, word2vec trained on a
public dataset. A Rectified Linear Unit (ReLU) [16] is used
as an activation function in the convolutional layers and a
softmax function is used in the fully-connected layer. By using
softmax function, the output of each unit can be treated as the
probability of each label. Here, N is the number of units of
the output layer (i.e. the total number of categories), x is input
and xi is the output of unit i. Then, the output pi of unit i is
defined as follows.

pi =
exi∑N
j=1 e

xj

(1)

In the pre-training phase, we train the model to predict the
category of each app. Cross-entropy is used as the loss function
of classifier LCLF as follows.

LCLF (w) = − 1

n

n∑
i=1

m∑
j=1

yij log(pij) (2)

where n is sample size, m is the number of classes, pij is the
output of the classifier of class j of the ith sample and yij is
an annotated label of class j of the ith sample. The weight
of neural network w is trained by minimizing Eq.(2) using
Stochastic Gradient Descent (SGD) [17].

2019 PerCom Industry Track

188



D. Building Classifier (fine-tuning)

Here, we describe building the classifier for local apps
using multi-modal features and CNN features. The structure
of the proposed deep neural network is shown in Figure 2
(b). The pre-trained weight is used in the CNN component
(left), and multi-modal features are input to the fully-connected
layer (right). Then, the multi-modal features and CNN features
are concatenated and fed to fully-connected layer. Finally,
the output is a binary classification, i.e. the app is local or
not local. The parameters of the proposed method except for
fully-connected layers are fixed, and the parameters of fully-
connected layers (a total of three layers: one layer from CNN
part, and two layers for multi-modal features) are fine-tuned.
The ReLU is used as an activation function for all layers except
the final fully-connected layer, which uses softmax function
as an activation function. Similar to the pre-training process,
the weight of the neural network w is learned using SGD
by setting cross-entropy as the loss function. The details of
parameters for the proposed model is described in the next
section.

In our proposed model, we use both hand-crafted feature
and automatically extracted feature based on CNN because
hand-crafted features and CNN-features have different charac-
teristics. Domain knowledge is required hand-crafted features
but can be trained by small amount of training data. On the
other hand, abstract feature can be learnt by CNN model but
large amount of training data is needed for model training.
Several existing studies [18], [19] exploit these different
characteristics to achieve higher accuracy by integrating these
features in deep learning model. In our study, we adopt same
strategy for achieving higher accuracy.

IV. EVALUATION

A. Experimental Setup and Data

In our evaluation, we used the data of 400,000 mobile apps
used in Japan. These data, which we refer to as GP data, were
crawled from Google Play between 6/28/2016 and 3/11/2017.
We used Mecab5 as Japanese morphological analyzer to sepa-
rate sentences into a set of words. Approximately 100,000 apps
in the top 20 ranked categories regarding number of registered
apps in the GP data were used for pre-training. In other
words, pre-training is performed by 20 classes classification
using 100,000 apps. We call this dataset as “pre-training data.”
Table II shows the category and number of apps for each
category regarding pre-training data. We annotated 1,518 apps
as training data (for fine-tuning), including 759 apps for each
positive/negative instance (called “training data”), and 500
apps for hold out test data (called “test data”), including 84
positive instances (local apps) and 416 negative instances (non-
local apps). Table III shows the category and number of apps
for each category regarding fine-tuning data. The number of
positive and negative samples in training data is equal because
imbalanced data is problematic in training phase. On the other
hand, the test data were imbalanced because, although we

5http://taku910.github.io/mecab/

TABLE II
CATEGORY AND NUMBER OF APPS IN PRE-TRAINING (TOP 20 ONLY)

Category # of apps Category # of apps
Entertainment 15016 Social 2275
Personalization 14979 Business 2095
Tools 12638 Sports 1588
Lifestyle 12181 Finance 1503
Education 10405 Communications 1435
Photography 4968 Shopping 1410
Music & Audio 4281 Medical 1408
Travel & Local 3478 Books & Reference 1385
Productivity 3324 News & Magazines 1343
Health & Fitness 2985 Video Players & Editors 1303

TABLE III
CATEGORY AND NUMBER OF APPS IN FINE-TUNING (TOP 20 ONLY)

Category # of apps Category # of apps
Lifestyle 216 Finance 40
Travel & Local 187 News & Magazines 30
Entertainment 132 Action 29
Education 100 Simulation 27
Tools 90 Productivity 27
Maps & Navigation 75 Photography 25
Personalization 74 Casual 24
Sports 72 Music & Audio 24
Puzzle 52 Health & Fitness 19
Business 40 Adventure 17

cannot know the exact ratio, the number of non-local app is
greater than that of local apps in a practical setting.

Since a CNN requires fixed length input, we used the first
1,000 words of the app description. The word embedding
dimension was 300, the number of feature maps was 128 and
the filter size is five. We used fastText trained using Japanese
Wikipedia for initialization of embedding layer. The learning
rate for SGD is set to 0.01, weight decay parameter is 1e-4,
momentum is 0.9 and we used Nesterov momentum [20]. We
tuned the model parameters in each model (i.e. baseline and
the proposed) and compared the best performance results of
each method.

The process of training and test the classification model
consists of the following three steps.

Step1: Pre-training CNN model (described in Fig. 2 (a))
using pre-training data.

Step2: Fine-tuning the proposed deep model (described in
Fig. 2 (b)) using multi-modal features and CNN-
features using training data. CNN part of the pro-
posed model is initialized by pre-trained weight.

Step3: Evaluating the proposed model using test data.

B. Compared Method

We implemented a similar method proposed by Li et al. [3]
for comparison. That method uses (1) features based on term
frequency, and (2) features based on the document topic. Note
that the latter is used to avoid data sparseness. Specifically,
the topic probability distribution of each document is used
as a feature. In our implementation, we used TF-IDF [21]
for term frequency-based features and the topic distribution of
each document calculated using LDA for topic based features.
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(a) Accuracy of Pre-training	 (b) Learning curve of pre-training	

epoch	 epoch	
1	 3	 5	 7	 9	 1	 3	 5	 7	 9	

Fig. 3. Accuracy and loss for pre-training

(a) Accuracy of fine-tuning	 (b) Learning curve of fine-tuning	

epoch	 epoch	
1	 3	 5	 7	 9	 1	 3	 5	 7	 9	

Fig. 4. Accuracy and loss for fine-tuning

To decide the number of topics for LDA, we evaluated the
number of topics for 5, 10, 20, 50. Then, we selected 20 as
the best parameter based on perplexity.

C. Evaluation Metrics

We used recall, precision and F1 as quantitative metrics.
Recall is the ratio of positives that are correctly classified to
actually positive samples. Precision is the ratio of the number
of correctly classified positive samples to the number of the
samples predicted as positive, and F1 is the harmonic average
of precision and recall.

D. Evaluation Results

Figure 3 shows the accuracy and loss for pre-training. From
this figure, we can see that the learning converged. Figure
4 shows the accuracy and loss for fine-tuning. As can be
seen, accuracy is improved each epoch. Table IV shows the
quantitative evaluation results (bold indicates the best result).
Here, Multi-modal feature + RF indicates that the classifier
is Random Forest and the feature is multi-modal feature, and
Multi-modal feature + MLP indicates that the classifier is a
Multi Layer Perceptron. CNN model means that the classifier
consists of only CNN architecture described in Fig. 2 (a).
CNN model (w/o pre-train) is a CNN model trained using
only training data, and CNN model (w/ pre-train) is a CNN
model with pre-training of classifying Google Play categories
fine-tuned by local app classification using pre-training data.
Proposed Model is the proposed deep neural network with both
multi-modal features and the CNN feature with pre-training
of classifying Google Play categories fine-tuned by local app
classification (Fig. 2 (b)).

From Table IV, the proposed model achieved the best classi-
fication performance among all models. When using the hand-
crafted multi-modal features, the proposed model improves

location

results
User App DB

Query
Processing

Module

location

Online Processing Offline Processing

results

Fig. 5. Architecture of our service

Recommended based on app 
market data

Fig. 6. Screenshot of our app recommendation service

each metric by 1-3% over the baseline method. By comparing
the CNN feature with and without pre-training, it can be seen
that pre-training of Google Play category is effective. Finally,
the proposed method outperformed the baseline method by
5.5-6% regarding F1 score and precision.

E. Industrial Application

Part of our work has been used as one of a recommenda-
tion method in our commercial mobile app recommendation
service, called “Osusume Apps (App Recommendation).”6

Several mobile apps are recommended based on the current
location of a user who consent to terms of service. The
architecture of the service is described in Fig. 5. Local apps are
classified using our method and stored in App DB as offline
processing. We used app market data from our app market
service, called “d apps & review.”7 When a user receives
recommendation from our service, the current location of the
user is submitted as query in the online processing. Example
of screenshot of our application used in Tokyo area is shown
in Fig. 6. “Tokyo Metro App” is recommended based on our
method for a user at Tokyo area.

V. CONCLUSION

In this paper, we have proposed a classification method for
local mobile app using multi-modal feature and a CNN feature.

6https://www.nttdocomo.co.jp/service/osusume appli/index.html (Japanese
Only)

7https://app.dcm-gate.com/ (Japanese Only)



TABLE IV
EVALUATION RESULTS

Method Precision Recall F1
Li et al. (2016) [3] 0.884 0.868 0.874
Multi-modal feature + RF 0.907 0.878 0.887
Multi-modal feature + MLP 0.916 0.902 0.907
CNN model (w/o pre-train) 0.703 0.582 0.629
CNN model (w/ pre-train) 0.930 0.892 0.901
Proposed Model 0.930 0.928 0.929

The multi-modal feature was based on the number of location
names in the app name and description, and the number of
installs, etc. The CNN feature was generated from the app
description using a CNN. We focused on the fact that each
app is labeled by developer and exploit this information to pre-
train the CNN. The evaluation results on a real-world dataset
of Google Play data demonstrated the effectiveness of the
proposed method. For example, the F1 score of the proposed
method is 5.5% greater than that of the baseline. Part of our
method is put into practical use of our app recommendation
service.

In future, we would like to apply the proposed method
to other type of app classification task, such as malware
classification.
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