
A Study on Behavior of Autonomous Vehicles
Cooperating with Manually-Driven Vehicles

Yusuke Nishimura
Research & Sumitomo Electric

Industries, LTD.
Osaka, Japan

nishimura-yusuke@sei.co.jp

Atsushi Fujita
Graduate School of

Information Science and Technology,
Osaka University

Osaka, Japan
a-fujita@ist.osaka-u.ac.jp

Akihito Hiromori
Graduate School of

Information Science and Technology,
Osaka University

Osaka, Japan
hiromori@ist.osaka-u.ac.jp

Hirozumi Yamaguchi
Graduate School of

Information Science and Technology,
Osaka University

Osaka, Japan
h-yamagu@ist.osaka-u.ac.jp

Teruo Higashino
Graduate School of

Information Science and Technology,
Osaka University

Osaka, Japan
higashino@ist.osaka-u.ac.jp

Akira Suwa
Research & Sumitomo Electric

Industries, LTD.
Osaka, Japan

suwa-akira@sei.co.jp

Hirofumi Urayama
Research & Sumitomo Electric

Industries, LTD.
Osaka, Japan

urayama-hirofumi@sei.co.jp

Susumu Takeshima
Research & Sumitomo Electric

Industries, LTD.
Osaka, Japan

takesima@sei.co.jp

Mineo Takai
University of California

Los Angeles, USA
mineo@ieee.org

Abstract—Autonomous vehicles will bring tremendous benefits
to society. However, it is expected to take a considerable period
of time for their spread, and during the transition period,
autonomous and manually-driven vehicles will share the same
roads. Under such situations, the driving behavior of autonomous
vehicles will influence manual drivers, for example, manually-
driven vehicles may be stuck behind the autonomous vehicles and
overtake them frequently if autonomous vehicles drive slowly for
safety. In this paper, we investigate how the traffic flow and
driving stress vary with autonomous vehicles by microscopic
traffic simulation. We develop a microscopic traffic simulator
that can reproduce traffic flow with autonomous vehicles and
manually-driven vehicles. The behavior of these vehicles can be
modeled by the combination of Intelligent-Driver Model (IDM)
and Lane change Model with Relaxation and Synchronization
(LMRS). These models can express various driver characteris-
tics through simulation parameters such as driving speed and
distance between vehicles (net distance), and we are able to
create realistic scenarios like overtaking autonomous vehicles by
manually-driven vehicles with faster speed than the legal speed.
From the simulation results, we found that there is a desirable
combination of speed and time headway that achieves both
smooth traffic and less stress of drivers with a given percentage
of autonomous vehicles.

Index Terms—autonomous vehicle, driving behavior, micro-
scopic traffic simulation, driving stress

I. INTRODUCTION

Autonomous vehicles are expected to bring huge benefits
such as avoiding traffic accidents and providing drivers more
free time. According to the roadmap of public and private ITS

framework [1], autonomous vehicles with level 3 capability are
expected to show up in the market between 2020 and 2025,
and full self-driven vehicles will be popular in the coming
decade or earlier. However, all manually-driven vehicles will
not be replaced by autonomous vehicles in the same period
because the number of manually-driven vehicles is more than
81 million in Japan [2]. Therefore, we cannot avoid the
prolonged transition time where autonomous vehicles share
roads with manually-driven vehicles. In this transition period,
autonomous and manually-driven vehicles are on the same
roads, and driving behaviors of autonomous vehicles may
influence manual drivers under such situations. For exam-
ple, since autonomous vehicles are strict regarding the legal
speeds, manually-driven vehicles may frequently overtake the
autonomous vehicles. This new phenomenon with autonomous
vehicles could cause traffic disturbances, and autonomous
vehicles could become factors in new stresses on drivers and
passengers [3]. In fact, in 2015, a traffic officer in the state of
California USA pulled over a Google’s driver-less car which
was traveling only 16 km/h [4]. London School of Economics
and Goodyear Tire and Rubber Company conducted a ques-
tionnaire to survey consciousness for autonomous vehicles on
about 12,000 drivers in 11 different countries. Approximately
41 % of respondents said that they felt uncomfortable about
traveling with autonomous vehicles. Since the driving behavior
of autonomous vehicles has a big influence on traffic flow like
traffic capacity and safety, the traffic flow would be chaotic
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with co-existence of autonomous vehicles and manually-driven
vehicles.

In this paper, we investigate how traffic flow and driving
stress vary with autonomous vehicles by microscopic traffic
simulations. We develop a microscopic traffic simulator that
can reproduce traffic flow with autonomous vehicles and
manually-driven vehicles. The behavior of these vehicles can
be represented by integrating two models, namely, Intelligent-
Driver Model (IDM) [5] and Lane change Model with Re-
laxation and Synchronization (LMRS) [6]. As a longitudinal
driving behavior model, IDM decides the acceleration or
deceleration based on the desired speed, the desired time
headway, the speed difference from a preceding vehicle, and
the distance between own vehicle and the preceding vehicle
(net distance). Meanwhile, as a lateral driving behavior model,
the lane change model decides to what extent drivers want to
change lanes and when and where they change their lanes.
Moreover, certain delays are inserted after the above decisions
to take into the consideration that autonomous vehicles can
react to surrounding situations faster than manually-driven
vehicles. These models can express various driver characteris-
tics through simulation parameters such as driving speed and
distance between vehicles (net distance). For example, we can
create such situations where autonomous vehicles never exceed
legal speed although manually-driven vehicles drive faster than
them to overtake them.

We have varied the simulation parameters through simula-
tion experiments on a multi-lane straight road and measured
the driving speed and the number of unsafe lane changes for
each vehicle to evaluate the driving stress. From the simulation
results, we found that there exist such situations that can
achieve both the smooth traffic flow and less driver stress
simultaneously. For example, with the 20% or less of the
autonomous vehicle ratio, the ideal driving speed and the
desired time headway can be 70 − 80km/h and 1.0 ∼ 2.0s
respectively for the best traffic smoothness and least driver
stress.

II. RELATED WORK

A. Traffic Simulator

Fundamental technologies and systems for Intelligent Trans-
port Systems (ITS) often target a large number of vehicles
traveling over a wide range of road networks, commercial
and open source traffic simulators that precisely simulate the
actual driving behaviors are normally used. Traffic simulators
used widely nowadays are classified into microscopic and
macroscopic ones according to the granularity of their driving
models. The microscopic traffic simulators design the driving
behavior of an individual vehicle on the road network in
more details. They usually determine the driving behavior
based on the relative speed to a preceding vehicle and the
distance between own vehicle and the preceding vehicle (net
distance). Typical simulators of the microscopic model include
VISSIM [7], SUMO [8], and S-Paramics [9]. On the other
hand, the macroscopic traffic simulators determine the driving
behavior of entire vehicles on the road network by vehicle

density, vehicle flow density and so on, and most of them
incorporate the fluid dynamics. Typical simulators of the
macroscopic model include SOUND [10] and NETSTREAM
[11]. Integrating multiple simulators for the use of different
models with different granularity has been considered in [12].

B. Cooperative Driving among Autonomous Vehicles

When autonomous vehicles become sufficiently popular,
cooperative driving among autonomous vehicles will bring
various good impacts on traffic situations. For example, if
autonomous vehicles make the net distance short enough by
forming high-density platoon and fleet, it will reduce CO2

emissions by mitigating air resistance and also reduce traffic
jams by the increase of vehicle density. In [13], the authors
propose a driving model that acquires the vehicle status in
a group of autonomous vehicles running through platoons
via inter-vehicle communication and takes cooperative actions
based on the vehicle status. They evaluated the correlation
of the ratio of autonomous vehicles with the speed and
fuel consumption by simulation experiments, and said that
when the ratio of autonomous vehicles is low (e.g. 10%), the
influence of manually-driven vehicles become the main cause
of congestion. In [14], the authors propose an algorithm for
lane change when a new autonomous vehicle joins a two-
vehicles platoon that consists of a leading manually-driven
vehicle followed by an autonomous vehicle. To verify that
the minimum necessary net distance is kept and unnatural
speed change does not occur at lane change, they implemented
the lane change algorithm on actual vehicles and conducted
experiments on test courses. As a result, the difference between
the actual net distance and the minimum net distance was
suppressed to 2m or shorter, and the change of speed was
also kept minimal. In [15], the authors assume a situation that
vehicles are equipped with Cooperative Adaptive Cruise Con-
trol (CACC), which can realize more efficient and precise car-
following, and evaluate the effectiveness of introducing lanes
dedicated to CACC vehicles near intersections by simulation
with VISSIM. Then it clarified the change of the average
stop time, average speed and the number of vehicles passing
through, depending on the ratio of vehicles equipped with
CACC and presence or absence of the dedicated lane. In [16],
the authors propose a method to estimate the net distance
using LiDARs and exchange information using Visible Light
Communication (VLC) among vehicles in the platoon.

C. Our Contributions

In the previous studies, it is assumed that autonomous
vehicles share information such as positions and speeds
of surrounding autonomous vehicles by inter-vehicle or
infrastructure-based communications. Therefore, their goals
are generating ideal traffic flows by cooperation among au-
tonomous vehicles. However, autonomous vehicles that appear
in the early stage of penetration will not have such functions,
and most of them are expected to work standalone. When
such autonomous and manually-driven vehicles exist on the
same roads, the traffic flow is likely to be chaotic where the
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leading vehicle of each fleet is not clearly defined in the traffic
system. Therefore, the decision of autonomous vehicles has a
big influence on traffic flow, such as traffic capacity and safety.
In our approach, considering such situations, we try to give the
guidelines on the parameters to model the decision making of
autonomous vehicles. This has not been done yet in previous
studies such as [13] [14], which evaluated the influence of
platoon. In addition, we evaluate the traffic in term of the
driving stress in a transition period, which has not also been
considered in the previous work introduced in this section.

III. DRIVING MODEL

Driving behavior consists of lateral driving behavior and
longitudinal driving behavior. The lateral driving behavior is
basically lane-change operations, and the longitudinal behavior
is composed of acceleration or deceleration operations. In
our approach, we implement a driving model that has been
validated assuming manually-driven vehicles into the multi-
agent simulator called Scenargie [17]. Then we reproduce
the physical positioning relationship between autonomous and
manually-driven vehicles by reflecting the driving character-
istics of each driver through parameters of the driving model
such as the speed, net distance, and lane change intention.

A. Lane Change Model

A driver determines whether or not to change the lane based
on the speed of surrounding vehicles and net distance. The lane
change model consists of “necessity and safety judgment”, and
the driver carries out lane change when these conditions are
satisfied.

1) Necessity of Lane Change: Based on the existing lane
change model [6] which quantifies the intention of desire for
the lane change, it judges the necessity of lane change. In [6],
the following three items are listed as representative motives
for lane change behavior where i and j denote the current and
target lanes, respectively.

1) desire to follow lane j to reach the destination (denoted
as dijr ),

2) desire to gain more speed in the new lane j (denoted as
dijs ), and

3) desire to keep the left lane j (denoted as dijb ) (keep right
in the right-hand traffic countries)

This model formulates the lane change desire of each of the
above motives based on the speed of the surrounding vehicles,
the net distance and the distance to the destination. Then the
model combines those quantified desires to quantify a driver’s
lane change desire. The desire to change from lane i to lane
j (denoted as dij) is given as the following equation (1).

dij = dijr + θijv (dijs + dijb ) (1)

θ defines the level of desire for the voluntary lane change. The
driver needs to change from lane i to lane j when dij is equal
to or greater than a given threshold dfree (i.e. dij ≥ dfree).

2) Safety Condition: The safety condition is defined using
the following four sub-conditions.

1) Let db′ denote the distance between a target vehicle and
the following vehicle (say b′) on the target lane. db′ must
be equal to or longer than the minimum net distance
(denoted as GDMIN ).

2) Let df ′ denote the distance between a target vehicle
and the preceding vehicle (say f ′) on the target lane.
df ′ must be equal to or longer than the minimum net
distance.

3) Let b̃b′ denote the deceleration of the following vehicle
on the target lane after changing the lane. b̃b′ must not
exceed the maximum allowable deceleration of a target
vehicle (denoted as bsafe).

4) Let b̃b denote the deceleration of a target vehicle after
changing the lane. b̃b must not exceed the maximum
allowable deceleration of a target vehicle (i.e. bsafe).

The driver can safely change the lane when all these conditions
are satisfied, that is, (2) must be satisfied.

db′ ≥ GDMIN ∧ df ′ ≥ GDMIN ∧
b̃b′ ≤ bsafe ∧ b̃b ≤ bsafe (2)

GDMIN is the minimum net distance when driving at speed
v(t). This is given as (3).

GDMIN = gd0 + T ∗ v(t) + v(t)(vf (t)− v(t))
2
√
asafebsafe

(3)

gd0 is the minimum net distance when the vehicle stops, T
is the desired time headway and vf (t) is the speed of the
preceding vehicle at the current time. asafe is the maximum
allowable acceleration of a target vehicle.

B. Acceleration Model

In our acceleration model, the driver determines the ac-
celeration in the next timeslot based on the speeds of the
target and preceding vehicles as well as the net distance in the
current timeslot. The acceleration model considers two states,
free-flow state and car-following state. In the free-flow state,
there is no vehicle ahead in the current lane and the driver
can accelerate his/her vehicle freely. Meanwhile, in the car-
following state, the driver is following a preceding vehicle.
We build different sub-models for these states.

1) Acceleration in Free-Flow State: When there is no ve-
hicle ahead in the current lane, the driver decides to accelerate
based on the speed of vehicle (v(t)), the maximum allowable
acceleration of vehicle (asafe), the desired speed of vehicle
(vd), and the simulation time (δt). This is given in (4).

dv(t+ 1)

dt
=


0 (v(t) = vd)

vd−v(t) (vd−asafe∗δt≤v(t)≤vd)
asafe (v(t) ≤ vd − asafe ∗ δt)

(4)

The driver does not accelerate when v(t) has already reached
vd. On the other hand, the driver accelerates with asafe when
v(t) has not yet reached vd. Moreover, the driver adjusts
acceleration so that the speed of vehicle at the next time
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Fig. 1. Feedback System in Speed/Position Updates

(v(t+δt)) cannot exceed vd when v(t+δt) exceeds the desired
speed due to acceleration asafe.

2) Acceleration in Car-Following State: When there is
a preceding vehicle on the current lane, the driver adjusts
the speed of vehicle so as to follow the preceding vehicle
based on Intelligent Driver Model (IDM) [5] that can express
smooth acceleration and deceleration to avoid collision with
the preceding vehicle. This is given as (5).

dv(t)

dt
= a[1− (

v(t)

vd
)4 − (

GDMIN

gd
)2] (5)

C. Speed Adjustment for Lane Change

The driver adjusts the speed in order to generate a safe
net distance according to the lane change desire when the
driver cannot keep the safety net distance at lane change by the
vehicle itself or other vehicles. More specifically, if the value
of lane change desire is equal to or greater than the threshold
(say dsync) and it does not satisfy the safety condition, the
driver regards a preceding vehicle (f ′) on the target lane as a
virtual preceding vehicle (vf ) on the current lane and decides
acceleration or deceleration which is given by (5). In addition,
if the driver of the preceding vehicle (f”) on the adjacent lane
has the lane change desire equal to or greater than the threshold
(dcoop) and it does not satisfy the safety condition, the driver
regards f” as vf and decides acceleration or deceleration
given by (5).

D. Delay in Reflecting Driving Behavior

Driving activity is generally modeled as a cycle of recogni-
tion, judgment, and operation. More precisely, a normal driver
recognizes the surroundings, judges the necessity of depressing
or stepping the pedals and operating the steering wheel and
then carries out the operations. Since there is a certain delay in
the judgment process which is affected by human perception
and reaction, we model the delay td (in other words, “reaction
time”) of judgment to represent the fundamental difference
between autonomous vehicles and manually-driven vehicles.

Here, general traffic simulators calculate speeds and po-
sitions of vehicles at next time (t + δt) based on those at
the current time t. On the contrary, we calculate speeds and
positions of vehicles at next time (t + δt) based on those at
t − td as shown in Fig. 1 to reproduce such recognition and
reaction delay.

E. Determining Parameter Values in Driving Model

Finally, we reflect the characteristics of the driving behavior
of autonomous and manually-driven vehicles through param-
eters included in the driving model.

When the traffic flow is modeled using microscopic model-
ing techniques, the flow can be expressed by the probability
distributions of state quantities such as speed, time headway,
and net distance [18]. In fact, in our driving model, the
decisions on a lane change, acceleration and deceleration
are made based on the speeds of the own vehicle and the
surrounding vehicles and the distance between the own vehicle
and the surrounding vehicles. Table I shows the parameters
of the driving model. Among these parameters, the desired
speed and desired time headway have a great influence on
the determination of the speed and net distance. Therefore,
we use probability distributions to assign values to these two
parameters to reproduce natural variations of driving behavior.

The desired speed of manually-driven vehicles is determined
following the normal distribution (average 79.8km/h, standard
deviation 8.28km/h) with reference to the distribution of actual
speed on the road with limit speed 60km/h [19]. The desired
time headway of manually-driven vehicles is determined fol-
lowing the probability distribution (average 1.69s, standard
deviation 0.35s) estimated by the kernel density estimation
method from the data measured from the Osaka Prefecture
Route 2 Osaka Central Ring Road.

The characteristics of the driving behavior of autonomous
vehicles are also reflected through the parameter values of the
desired speed and the desired time headway. We assign the
values described in [6] to other parameters.

IV. DRIVING BEHAVIOR ANALYSIS

We conduct microscopic traffic simulations to reproduce
traffic flow with autonomous and manually-driven vehicles by
implementing the driving models described in Section III on
the multi-agent simulator Scenargie. In the simulations, we
analyze how different the traffic flow and driving stress are,
under the different characteristics of the driving behavior of
autonomous vehicles and ratios of autonomous vehicles.

A. Metrics

We measure traffic capacities to evaluate the traffic effi-
ciency in the simulations. A traffic capacity represents the
maximum number of vehicles that can pass through across
line of a road within a unit time [20]. We also measure travel
time, which is the time required for a vehicle to travel a certain
section [21]. Driving stress is evaluated based on the behavior
of a target vehicle and the surrounding vehicles. In [22], the
authors summarized the stresses experienced during driving
as follows, (i) frustration when drivers have to slow down,
(ii) anxiety caused by unsafe lane changes by surrounding
vehicles, and (iii) anxiety caused by undesired lane driving
(this happens when drivers feel difficulty to come into the
desired lanes, for example). In order to investigate how much
stress is caused, we analyzed (i) the difference between the
desired and traveling speeds, (ii) the number of unsafe lane
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TABLE I
PARAMETERS OF DRIVING MODEL

Parameter Symbol Manually-Driven Vehicles Autonomous Vehicles
Desired Speed (vd[km/h]) N(µ = 79.8, σ = 8.28) Depends on the Scenario
Desired Time Headway (T [s]) N(µ = 1.69, σ = 0.35) Depends on the Scenario
Reaction Time (td[s]) 0.7 0.1
Maximum Acceleration (asafe[m/s2]) 1.25
Maximum Deceleration (bsafe[m/s2]) 2.09
Stopping Net Distance (gd0[m]) 3
Vehicle Length (l[m]) 4
A Threshold for Judgment of Lane Change (dfree) 0.365
A Threshold for Judgment on Speed Adjustment for Lane Change of A Target Vehicle (dsync) 0.577
A Threshold for Judgment on Speed Adjustment for Lane Change of Another Vehicle (dcoop) 0.788

Fig. 2. Unsafe Lane Change

TABLE II
SIMULATION PARAMETERS

Simulation Time 3, 600[s]
Time Step 0.1[s]
Speed Limit 60[km/h]
Vehicles’ Initial Lanes Random
Target Lane Initial Lane
Vehicle Generation Interval Reciprocal of Traffic Volume

changes, and (iii) the ratio of incomplete travels (i.e., the
ratio of travels in which drivers were unable to reach the
destinations). Unsafe lane changes are defined as lane changes
such that the distance between a target vehicle and a vehicle
performing the lane change is less than the minimum net
distance GDMIN . Fig. 2 shows the illustration of the positions
of the target vehicle and the surrounding vehicle when such
an unsafe lane change occurs.

B. Environment

We used a straight road with three lanes with 3km long
and 6m lane width. The traffic volumes are varied from
1, 000veh/h to 2, 000veh/h in order to calculate the maximum
traffic volumes. When we evaluate other metrics, we set traffic
volume as 1, 000veh/h in order to reproduce free flow with
a large number of traveling vehicles. The other simulation
parameters are shown in Table II.

C. Simulation Scenarios

As described in Section III-E, the characteristics of the
driving behavior of autonomous vehicles are configured via

TABLE III
PARAMETER VALUES OF AUTONOMOUS VEHICLES IN SCENARIO I

Parameter Value
vd[km/h] 50, 60, 70, 80, 90, 100, 110, 120
T [s] 1.69 (Average Value of Manually-Driven Vehicles)

TABLE IV
PARAMETER VALUES OF AUTONOMOUS VEHICLES IN SCENARIO II

Parameter Value
vd[km/h] 79.8 (Average Value of Manually-Driven Vehicles)
T [s] 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Fig. 3. Traffic Volume (Scenario I)

two parameters, desired speed (vd) and desired time headway
(T ). In order to investigate how each parameter affects traffic
flow and driving stress, we fix one parameter to the average
value of manually-driven vehicles and vary the other parameter
sequentially. We conducted a simulation experiment (referred
to as Scenario I) to vary the desired speed of autonomous
vehicles and another simulation experiment (referred to as
Scenario II) to vary the desired time headway. The parameter
values in Scenarios I and II are shown in Tables III and IV,
respectively.

D. Evaluation Results

1) Scenario I: The traffic flow in Scenario I is shown
in Fig.3. As seen, when the desired speed of autonomous
vehicles is over the speed limit (60km/h) and the ratio of
autonomous vehicles is less than 20%, the traffic capacity has
almost the same value. However, when the desired speed of
autonomous vehicles is over the average value of manually-
driven vehicles and the ratio of autonomous vehicles is more
than 30%, the traffic capacity increases correspondingly as
the desired speed of autonomous vehicles and the ratio of
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(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 4. Travel Time (Scenario I)

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 5. Difference between Desired Speed and Driving Speed (Scenario I)

autonomous vehicles increase. The travel time is shown in
Fig. 4. The travel time of manually-driven vehicles decreases
as the ratio of autonomous vehicles increases when the desired
speed of autonomous vehicles is higher than 80km/h. On the
other hand, the travel time of autonomous vehicles decreases
as the desired speed of autonomous vehicles increases. The
reason why the traffic flow does not vary when the ratio of
autonomous vehicles is less than 20% is that autonomous
vehicles are likely to follow (slow) manually-driven vehicles
even though their desired speeds are high. On the contrary,
when the ratio of autonomous vehicles is higher than 30%,
the traffic efficiency improves. This is because the autonomous
vehicles with higher speeds are likely to be the leading vehicles
of fleets.

The metrics to evaluate the driving stress in Scenario I
are shown in Figs. 5, 6, and 7. The difference between
the desired speed and the travel speed of manually-driven
vehicles increases as the ratio of autonomous vehicles in-
creases when the desired speed of autonomous vehicles is
lower than 70km/h. On the other hand, when the desired speed
of autonomous vehicles is higher than 80km/h, the difference
between the desired speed and the travel speed of autonomous
vehicles increases as the desired speed of autonomous vehicles
increases. When the desired speed of autonomous vehicles
is lower than 70km/h, manually-driven vehicles often follow
autonomous vehicles traveling with slow speeds. Similarly,
when the desired speed of autonomous vehicles is higher
than 80km/h, autonomous vehicles often follow manually-

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 6. Number of Unsafe Lane Changes (Scenario I)

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 7. Ratio of Incomplete Travels (Scenario I)

driven vehicles traveling with slow speeds. In addition, when
the desired speed of autonomous vehicles is higher than
80[km/h] and the ratio of autonomous vehicles is 40 ∼ 80[%],
autonomous vehicles more frequently cut into manually-driven
vehicles (unsafe lane change) compared to the other situations
because autonomous vehicles often overtake manually-driven
vehicles. Oppositely, the number of manually-driven vehicles’
cut-in operations to autonomous vehicles does not vary with
the change of the desired speed of autonomous vehicles.
When the desired speed of autonomous vehicles is slower than
60km/h and the ratio of autonomous vehicles is 10 ∼ 30%,
the ratio of incomplete travels of manually-driven vehicles
increases compared to the other situations. This is because
manually-driven vehicles traveling with high speeds cannot
keep the safe net distance to return to the original lane after
overtaking autonomous vehicles. Similarly, when the desired
speed of autonomous vehicles is over 100km/h, the ratio of
incomplete travels of autonomous vehicles increases because,
this time, autonomous vehicles traveling with high speeds
cannot keep the safe net distance to return to the original lane
after overtaking manually-driven vehicles.

From these simulation results, there are certainly some
situations with better traffic flow and less driver stress. In
such cases that the percentage of the autonomous vehicles is
under 20%, we can say that the desired driving speed and the
desired time headway can be 70 ∼ 80km/h and 1.0 ∼ 2.0s,
respectively, while driver stress is mitigated. Besides, the
desired speed is 90km/h when the ratio of autonomous vehicles
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Fig. 8. Traffic Volume (Scenario II)

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 9. Travel Time (Scenario II)

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 10. Difference between Desired Speed and Driving Speed (Scenario II)

is 30% or 90%, and the desired speed is 70km/h when the ratio
of autonomous vehicles is 40 ∼ 80%.

2) Scenario II: The traffic flow in Scenario II is shown
in Fig.8. When the desired time headway of autonomous
vehicles is less than 1.5s and the ratio of autonomous vehicles
over 30%, the traffic capacity increases compared to the
traffic flow with manually-driven vehicles only. The travel
time is shown in Fig. 9. The travel time of both manually-
driven vehicles and autonomous vehicles somehow decreases
as the ratio of autonomous vehicles increases when the desired
time headway of autonomous vehicles is less than 1.5s. The
reason why the efficiency of traffic flow improves when the
desired time headway is less than 1.5s is that the net distance
of each vehicle decreases and the occupation ratio of the
road increases. The metrics to evaluate the driving stress in
Scenario II are shown in Figs.10, 11, and 12.

The difference between the desired speed and the travel
speed of both autonomous and manually-driven vehicles rather

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 11. Number of Unsafe Lane Changes (Scenario II)

(a)Manually-Driven Vehicles (b)Autonomous Vehicles

Fig. 12. Ratio of Incomplete Travels (Scenario II)

decreases as the ratio of autonomous vehicles increases. This
is because the net distance of each vehicle decreases when
the desired time headway of autonomous vehicles is less than
1.5s. On the other hand, when the desired time headway of
autonomous vehicles is over 2.5s, it increases as the ratio of
autonomous vehicles increases because the net distance of
each vehicle increases. The number of unsafe lane changes
by autonomous vehicles to manually-driven vehicles increases
when the desired time headway of autonomous vehicles is less
than 1.5s. Especially, it increases greatly when the desired
time headway of autonomous vehicles is less than 0.5s and
the ratio of autonomous vehicles is 30 ∼ 80%. The number
of unsafe lane changes of manually-driven vehicles to au-
tonomous vehicles increases when the desired time headway
of autonomous vehicles is over 2.5s. Especially, it increases
greatly when the ratio of autonomous vehicles is 20 ∼ 70%.
This is because autonomous vehicles judge whether the lane
change is safe or not based on the minimum net distance
determined in proportion to the desired time headway. The
ratio of incomplete travels does not vary with the change of
the desired time headway of autonomous vehicles.

From the simulation results, we can say that the desired
time headway of autonomous vehicles is 1.0 ∼ 2.0s when the
ratio of autonomous vehicles is less than 20%, while driver
stress is mitigated. Besides, the desired time headway can be
1.0 ∼ 1.5s when the ratio of autonomous vehicles is over
30%.
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V. CONCLUSION

In this study, we have modeled the behavior of autonomous
and manually-driven vehicles by focusing on their fundamental
difference. In addition, we naturally reproduced the variations
of driving behavior of manually-driven vehicles and modeled
the driving behavior of autonomous vehicles via known pa-
rameters such as desired speed and desired time headway
investigating the state-of-the-art study on driving models. We
implemented these models on Scenargie in order to carry
out microscopic traffic simulations in which autonomous and
manually-driven vehicles coexisted. Then, we showed the
influence of the driving behavior of the autonomous vehicle
and the ratio of autonomous vehicles on traffic flow and
driving stress. We also evaluated the quality of traffic flow
from the viewpoints of efficiency and smoothness of traffic,
and the driving stress caused by frustration when drivers have
to slow down and feel anxiety about unsafe lane changes and
passing destinations.

Through the simulation experiments, in such cases that the
percentage of the autonomous vehicles is under 20%, we
conclude that the desired driving speed and the desired time
headway are 70 ∼ 80km/h and 1.0 ∼ 2.0s, respectively,
keeping driver stress sufficiently low. Similarly, we have
shown that the desired speed is 90km/h and the desired time
headway is 1.0 ∼ 1.5s when the ratio of autonomous vehicles
is 30% or over 90%, and the desired speed is 70km/h and the
desired time headway is 1.0 ∼ 1.5s in other cases.
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