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Abstract—A fundamental challenge in real-time labelling of
activity data is user burden. The Experience Sampling Method
(ESM) is widely used to obtain such labels for sensor data.
However, in an in-situ deployment, it is not feasible to expect
users to precisely label the start and end time of each event or
activity. For this reason, time-point based experience sampling
(without an actual start and end time) is prevalent. We present
a framework that applies multi-instance and semi-supervised
learning techniques to perform to predict user annotations from
multiple mobile sensor data streams. Our proposed framework
estimates users’ annotations in ESM-based studies progressively,
via an interactive pipeline of co-training and active learning. We
evaluate our work using data collected from an in-the-wild data
collection.

Index Terms—Annotation prediction, Experience Sampling
Method, User annotation, Human activities, User-driven data
collection, Experience improvement, Semi-supervised learning,
Multi-view learning, Multi-instance learning, Mobile sensing

I. INTRODUCTION

The Experience Sampling Method (ESM) [1] provides op-

portunities to record ground-truth data through self-reports

(i.e. annotations) from the participants in a data collection

campaign. Originally, ESM was widely used in the domain

of psychological research, for example [2]. However, it has

offered significant benefits for ubiquitous computing research

in recent years, for example, emotion recognition [3], mobile

user intimacy and smartphone usage [4], [5], human activity

recognition [6], lifelogging [7]–[10] and mobile sensor data

collection [11]–[14].

ESM can be configured in various ways, such as having

either regular or intermittent sampling. Inherently, human

annotations acquired from ESM in a pervasive sensing envi-

ronment can be associated with their past or recent activities,

events, social encounters and spatiotemporal contexts (e.g.

proximity of locations and surrounding point-of-interest (POI)

categories in a certain time segment). These annotations can

be requested based on specific events or changes of sensor

signals. Asking users to annotate their activities, events and

contexts while these are ongoing can be challenging because of

users’ subjective mental states and cognitive workload during

the annotation processes. Moreover, identifying such changes

or events in the data streams is also a significant challenge be-

cause of the reliability of these perceived human annotations in

the wild. A less subjective way to identify specific activities or

events can be performed with a restricted experiment setting.

In this case, these events can be distinguished based on sudden

changes in multidimensional sensor channels or streams, such

as fall detection [15] and human activity recognition [16], [17].

In a typical application of in-the-wild data collection, ESM

must be performed in a low-burden manner to produce a

higher rate of compliance [18]. To perform a specific task

in daily life, retrospective memory [19] is an essential aspect

of remembering previous events or human activities, which

can also affect the process of annotation in a real-world

scenario. Ideally, an annotation should be attained interactively

through a ubiquitous instrument (e.g. surveys through mobile

apps), given the possibility of undefined time boundaries for

such activities and the contextual information recorded. For

example, daily annotations can be performed by users as they

perform their activities.

Our proposed framework applies multi-instance learning

(MIL) to the features extracted from the multivariate sensor

data, which correspond to the recent time duration of a

given user’s annotation. Additionally, a semi-supervised learn-

ing component corresponds to the usage of both co-training

and active learning to predict and improve the annotation

classifier progressively. In this case, the aim of annotation

prediction is for an ESM system to be confident to obtain

the next annotation interactively through accurate inference

of user context. Consequently, the direct implication of our

contribution is targeted towards process optimisation in ESM-

based data collection — in particular, by reducing the burden

of annotations (e.g. minimising choice overload in a survey

form).

Our pioneering work shows its effectiveness in reducing the

burden during an ESM study by predicting user annotations

just before ESM-based surveys are triggered. Further, its capa-

bility in progressive learning is based on active feedback from

its corresponding user and a variety of sensor data streams

from mobile devices. The outcome of our work considers the

following aspects in mobile sensor data collection (especially

the in-the-wild data collection and sensing applications that

rely on ESM-based annotations):

• Our framework can predict user annotations during
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an ESM study, and it enables the model to adapt pro-

gressively based on a mutual agreement between co-

trained models from heterogeneous data sources (mobile

sensors). In other words, a semi-supervised learning ap-

proach is applied to the small amount of labelled data

during bootstrapping, which aims to predict the anno-

tation accurately before an annotation (e.g. ESM-based

survey) is requested from the mobile user. Consequently,

the model can evolve progressively (through a model

re-training mechanism) based on the inclusion of newly

unlabelled data in the training pool.

• As a result of semi-supervised learning, our work is

resilient to missing sensor data. For example, the light

sensor in a smartphone might not always be available

during a human activity performed just before the user is

requested to participate in an ESM-based survey. Multi-

view (i.e. co-training) and active learning approaches are

applied to feature subsets of the unlabelled sequences

streamed from available sensors at the time of annotation

prediction.

• The design considerations are important, to improve

the interaction and engagement of prevalent ESM-based

surveys for user-driven mobile data collection in-the-wild.

Hence, our initial work aims to provoke the ubiquitous

computing research to increase the reliability and qual-

ity of annotations by providing context-aware human-

computer interaction in intelligent applications.

II. RELATED WORK

Experience Sampling Method. The ESM is a prevalent

approach used in many domains [6], [20]–[23] to recall recent

or past activities of a user. Its reliability and validity have been

empirically studied in [1], which provides convincing results

for the labels (activities) that are obtained through a systematic

random sampling of daily life. Experience-Sampling Forms

(ESF) can be easily embedded in mobile phone applications.

As Csikszentmihalyi and Larson detailed in [1], ESF is

typically designed for a short (in-situ) survey or self-report

questionnaire that should take no more than two minutes

to complete. Many studies in recent years have focused on

reducing the cognitive workload of the ESM by leveraging

the unique characteristics of mobile users’ behaviours or

activities—for example, ESM that is driven by micro-usage

of mobile applications [24] and break-points between a user’s

activities [25]. According to [3], the experience sampling could

be triggered for the mobile users from the signal, event or time

(at regular intervals). Moreover, the users in [6] self-annotated

the start and end time for before and after their activities.

However, these types of data collection typically require the

users to be actively engaged in defining the start time and end

time of their activities. When the data collection is performed

through participatory or opportunistic sensing [26] in the wild

(such as daily commuting journeys), users may forget to define

the end time of the activities due to their environmental

contexts and the constant distractions within their vicinity.

In several cases, experience sampling can be performed to

ask about the recent or current activity of a user without

strictly defining the start and end time of activity. Hence,

it is inherently challenging to extract relevant data related

to each experience sampling label recorded at a particular

timestamp (i.e. point-based experience sampling) and build

suitable models to predict the annotations ahead of time.

In this paper, the challenge of annotation prediction is

inherently different to a forecasting problem. Annotation pre-

diction refers to the classification of a label just before a

user is presented with information that may be relevant to

the final prediction output (e.g. ESM-based surveys where the

questions can be relevant to recent user activities). In contrast,

a forecasting problem is targeted towards the future occurrence

of the annotations. Minor and Cook [27] proposed an activity

forecasting method to predict the expected time until a target

activity occurs using a regression tree classifier. In fact, such

a method could also be leveraged to infer when is the best

time to prompt the user for an ESM-based survey.

Multi-instance and Multi-view Learnings. MIL can be

used to tackle problems in behavioural studies where the

boundary of target labels is unclear because of subjective

experience during the user’s annotations at those moments.

Typically, the research problems in this space are formulated

so that data can be continuously streamed, which can then be

organised into bags for inference purposes.

In a real-world scenario of mobile sensor data collection, the

availability of reliable training data is often seen as a critical

issue for building a better predictive model. In this case,

building a classifier based on small subsets of data might not

be enough for accurate prediction of ESM annotations because

they might also be influenced by the mobile user’s activities

and environmental contexts. In [28], semi-supervised learning

was used to solve the multi-instance problem by treating

instances in the positive bags as unlabelled data. A common

semi-supervised method that has been used in real-world ap-

plications is co-training [29], which allows the training of two

distinct classifiers from multi-view perspectives by labelling

unlabelled instances for each other. For instance, this concept

has then been adapted to the application of activity recogni-

tion in [30]. In ubiquitous environments, sensor data can be

collected through streaming from multiple sources. Hence, a

multi-view perspective is needed for the inference of subjective

human behaviours. In [31], multi-task multi-kernel learning

(MTMKL) exploits the kernel functions that are represented

from different views or modalities for affective computing

studies. Due to its single task objective, MTMKL does not suit

the purpose of annotation prediction for ESM-based surveys.

Co-training was also applied in multi-transfer [32] for cross-

domain knowledge transfer. Since annotation prediction in a

typical ESM process is targeted to one domain, such a transfer

learning technique may not be feasible in our case.

Active Learning. Inherently, a model can be improved

progressively by reliable annotations (ground-truth) during the

data collection process. This improvement can be achieved

by the application of active learning, to determine the most

informative points based on direct feedback from a user.
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In [33], active learning was applied to the annotation process in

a crowdsourcing scenario in which multiple annotators were

required to provide their own activity labels. However, this

solution could be over-generalised since they are generally

used for determining informative sensing data on a specific

community of individuals. In our case, the daily activities are

more tailored to each person for personal intelligent mobile

sensing (i.e. first-person based activity recognition). Moreover,

the true label complexity in the authors’ proposed framework

was heavily dependent on the number of clusters derived from

unlabelled data instances. In a typical ESM-based survey, this

complexity can be simplified since the true label is obtained

based on the mental state of the user at a given time. To

the best of our knowledge, we are the first to investigate

and propose a continuous learning framework for predicting

annotations in ESM, using multi-view multi-instance learning.

III. METHODOLOGY

We address the following main research question: Given

an ESM-based annotation acquired from time-point based

experience sampling, can a smartphone predict the annotation

just before an ESM-based survey is presented to the user?

A. Problem Formulation

We first formulate the problem we are addressing, in terms

of human activities and contextual information captured in an

ESM study. Hence, we define the following notations:

Let S = {S1, S2, ..., Sn} be the set of sensors available

during the collection of data on a mobile user, where i is

the index of i-th sensor, 1 ≤ i ≤ n and n is the total

number of sensors. Let sensor Si be the source of time series

data containing sequences of real-valued numbers. It should

be noted that the time series data streamed from Si could be

composed of multiple time series (e.g. an accelerometer sensor

that produces the reading of acceleration in x, y and z axes,

and its magnitude).

Let the discrete label a be a unique member of a label

set A = {a1, a2, ..., ad}, where d is the number of unique

experience sampling labels a in A.

Let Sia = {s1, s2, ..., sm} be the particular time series

streamed by sensor Si in which a point-based experience

sampling label a exists after the last instance (i.e. j = m),

where j is the index of j-th instance in the observed time series

Sia, 1 ≤ j ≤ m and m is the length of Sia within a certain

time-interval boundary t∆ ≤ tδ before the occurrence of a

and tδ is a constant for a maximum time range of observed

time series for a.

Consider this scenario. The time series of magnitude for the

accelerometer sensor contains two annotations (see Figure 1).

Let tδ be a constant of 30 minutes that results in the observed

time series with the duration of 30 minutes before the anno-

tation ‘Bus Riding’ (i.e. t∆ = tδ). However, the duration of

‘Light Rail Riding’ is less than 30 minutes (i.e. t∆ = tδ − z

) since the time portion z of tδ belongs to ‘Bus Riding’.

In a scenario of ESM-based surveys that are triggered at

particular time points, the experience sampling labels are given

Fig. 1. Point-based experience sampling label problem for user annotations.
Blue (‘Bus Riding’) and red (‘Light Rail Riding’ dashed lines are the ESM
data points (i.e. point-based experience sampling labels).

by the users. Hence, we formulate the problem in which

labelled data are scarce while not all sensors are available

within the duration of tδ before the ESM-based survey is

triggered. Let us consider the following application scenario

in which the mobile app is constantly recording sensor data in

the background. If the annotation can be predicted correctly

before the app notifies the mobile user, an interactive survey

form can be constructed based on such intelligent inference.

Hence, a simple binary choice can be presented instead of

having potential overloaded options that may disengage or

demotivate the user to contribute high-quality annotations.

Therefore, the problem of annotation prediction is formu-

lated as follows: given an unlabelled time series set for all

sensors Su = {S1u, S2u, ..., Snu} within the constrained

time interval t∆, predict the annotation that the mobile user

will choose during an ESM process, where i corresponds to

i-th sensor Si of Siu and 1 ≤ i ≤ n.

Let au be the label to be predicted for the recent time

range t∆ containing Su. Hence, the objective of annotation

prediction is to accurately classify au from A (i.e. au in A).

B. Implementation

In a typical ESM scenario, a robust and progressive model is

needed to predict the annotation just before the user is asked.

Therefore, we design a framework based on the assumption

that only a small amount of data are available for those

annotations. In other words, there exists the initial subset of

data corresponding to each member a of A. Here we present a

semi-supervised framework (CoAct-nnotate) to predict a user’s

experience sampling labels at the time they are about to be

requested. Thus, our framework aims to predict users’ ESM

annotations and continuously learn to improve the model over

time.

An overview of CoAct-nnotate’s architecture is presented

in Figure 2. This framework consists of multi-instance and

semi-supervised modules. Instances from the mobile sensors

are organised into bags where the representative features of

each bag need to be extracted in the multi-instance module.

A classifier is then trained for each data source (i.e. each

mobile sensor). These initially trained classifiers are based on

a small subset of data. For example, training of a classifier is

based on the first occurrence (instances in the first bag) of a
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Fig. 2. CoAct-nnotate: user-driven annotation prediction framework for
mobile experience sampling labels.

particular annotation. Next, the semi-supervised module aims

to improve the overall performance of annotation prediction

based on the inputs of predicted annotations in multi-view

perspectives (from co-trained classifiers).

C. Multi-instance Learning for Experience Sampling Labels

To address the loosely-coupled nature of experience sam-

pling labels on the recent streaming of sensor data, MIL is

applied, whereby the boundary of an annotation is weakly

assumed on a sequence of training instances. In a typical task

of MIL, the ultimate aim is to predict a class label from a bag

of instances, which contains at least one positive instance for

the true label. As shown in Figure 3, the process of MIL is

generalised to allocate all instances from each sensor into a

bag first, which is labelled as a. For learning and prediction

purposes, feature bags for a are prepared through feature

construction and extraction. In our work, feature construction

refers to the process of creating new information that can be

derived from instances within the dimension of all mobile

sensors S, for instance, the magnitude of acceleration that

can be computed from all three axes of x, y and z from the

accelerometer of a wearable device.

Consequently, feature extraction corresponds to the deriva-

tion of new information through a mapping function. This

process is typically performed in a time interval manner

(e.g. extracting features from temporal and frequency domains

within a given time window). Thus, the final product of the

MIL component in our proposed framework is the set of

feature bags, which will be used for learning and prediction

purposes. A feature bag refers to a representation of a multi-

instance set. Each bag contains instances of extracted features

(from a particular sensor). Each set of feature bags (for all

sensors) is associated with an annotation.

Fig. 3. Workflow of multi-instance learning of instance streaming from
multiple mobile sensors.

A sensor feature bag for label a is represented as Sia

throughout this paper. The purpose of this process is to derive

the sets of representative data from sensors with respect to all

possible annotations A. In the CoAct-nnotate framework, we

propose one classifier should be trained on each set of sensor

feature bags of A. In other words, there would be at least

one classifier trained for each mobile sensor. This approach

is preferred due to the real-world scenario where there would

be the possibility of no data (instance) to be streamed from a

particular sensor Si within a recent time duration t∆.

In this paper, MIL problem entails the aim to predict a

bag of unlabelled data containing the final product of feature

construction and extraction processes (refer to Figure 3).

Hence, we define the MIL prediction problem as follows:

Let us define unlabelled feature bags Su, where Su =

{S1u, S2u, ..., Snu}, i is the index of i-th feature bag for

i-th sensor, 1 ≤ i ≤ n and n is the total number of feature

bags. A feature bag Siu can contain no feature instances (i.e.

count(Siu) ≥ 0).

Feature instances in a feature bag is defined as a set X =

{x1, x2, ..., xl}, k is the index of k-th feature instance in a

bag, 1 ≤ k ≤ l and l is the total number of instances in the

feature bag.

A classifier Hi is used to predict the annotation/class label

of Siu, where HA = {H1,H2, ...,Hn}, i is the index of

i-th classifier for i-th sensor, 1 ≤ i ≤ n and n is the total

number of sensor classifiers.

In a real-world setting, a sensor may be unavailable or

turned off by users. For instance, a user may turn off the

Bluetooth and Wi-Fi sensors or location services to pre-

serve her smartphone’s battery. Therefore, the condition of

count(Siu) ≥ 0 holds a conclusive inference when an experi-

ence sampling label a may have no entry of feature instances

computed within the recent t∆.
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As a sensor may stream no data for a, the MIL component

in CoAct-nnotate trains a classifier for each sensor on the

feature instances (contained in feature bags for all experience

sampling labels A). Consequently, each feature instance in the

unlabelled sensor feature bag Siu can be predicted for its anno-

tation by the posterior probability Pr(y|X) of trained classifier

Hi. Ultimately, annotation prediction can be performed on the

unlabelled bag Siu by gaining consensus of annotation for all

its feature instances. The simplest form of the consensus is

the majority voting mechanism, which is used in our CoAct-

nnotate implementation in this paper. In other words, the bag

labels can be defined as yiu = maxl(yiul), where yiul are

the instance labels inferred from Siu using Hi and yiu is

the product of annotation prediction inferred from maximum

count function over all yiul. Our CoAct-nnotate framework

is not restricted to this maximum inference function for the

annotation prediction.

D. Co-training of Sensor Classifiers

In everyday settings, the availability of sensors and annota-

tions is one of the primary roadblocks to enable intelligent

sensing and ESM applications. By nature, the signals that

are streamed from the sensors embedded in a smart device

(i.e. smartphone) can characterise the traits of human activities

and their contextual information, which can be analysed and

differentiated in a multifaceted perspective (i.e. multi-view

annotation prediction from heterogeneous sensor streams).

To build a multi-view model for annotation prediction,

the co-training approach is applied in our framework by

randomly allocating sensor classifiers to two distinct views

(refer to Figure 2). In theory, co-training (also known as co-

regularisation) [34] is a multi-view consensus learning ap-

proach that leverages two feature representations (i.e. ‘views’)

to minimise the misclassification rate by maintaining the

consistency of classification decisions from two independent

classifiers. Hence, this semi-supervised learning approach is

adapted to our problem to predict annotations reliably from

the two distinct views of heterogeneous sensor classifiers.

In this case, the splitting of sensor classifiers should be

performed evenly into two subsets (corresponding to first and

second views). Hence, these two sets of classifiers would

be used as a joint-model to predict an annotation for un-

labelled bags of sensor data. The multi-view model evolves

by including the sample of unlabelled data in the training

pool (to rebuild the classifiers) upon mutual agreement be-

tween the two views. The main objective of co-training, in

this case, is to improve the performance of classifiers by

mutual agreement of predicted annotations from two views.

Inherently, the consensus of annotation prediction in a view

should be achieved via an intrinsic mechanism to select the

predicted annotation amongst all instances in each sensor

feature bag. Hence, the simplest form that can be used is

majority voting from predicted class labels from all sensor

bags (i.e. yuv = maxi(yiu)).
Given the view V , yiu corresponds to the inferred annotation

of the unlabelled sensor feature bag Siu contained in V and
yuv is the product of annotation prediction from maximum

count function over all yiu in V . V is a general representation

of view for either first view Vfirst or second view Vsecond

in the co-training process of CoAct-nnotate’s semi-supervised

module (as shown in Figure 2).

For an unlabelled bag Su, the prediction of annotation

can be performed with a three-step process: summarisation

of instances in unlabelled bags, prediction of annotation and

improvement of the overall multi-view model based on the

evaluation of mutual agreement of classification decisions.

E. Data Summarisation of Feature Instances

Since the number of instances contained in the sensor

feature bags can be unpredictable (given the natural settings

of mobile data collection), it is important to derive the rep-

resentative instances that can be used for prediction (which

can also be included in the training pool for the progressive

improvement of the proposed multi-view model). In this

case, data summarisation is leveraged to derive representative

instances by clustering the instances of features for one sensor

bag based on density measures.

For the unlabelled time series of a sensor Siu, data summari-

sation is performed before annotation prediction. We employ

a density based data summarisation based on cluster change

of sequential instances of the sensor data. Previously in [35],

density based data summarisation has been studied to main-

tain reliable inter-rater agreement between machine learning

models while inducing a high space saving ratio. In this case,

such space saving factor provides beneficial inputs for the

co-training mechanism of training sensor classifiers to allow

progressive learning over time and according to the mobile

user’s behaviour in the wild and dynamic environments.

As a result of the data summarisation process in the pro-

posed CoAct-nnotate framework, representative features can

be ultimately obtained in a compact form. This compact form

is then used for multi-view annotation prediction. In several

cases, the direct benefit can be directed towards the model

that may require more time for prediction, such as nearest

neighbours based classifiers.

The product of this data summarisation process is not only

beneficial for multi-view annotation prediction but also to

improve the overall performance of a multi-view model with

less data to be included in the proceeding training phase

(after the process of annotation prediction and active feedback

obtained from the user). Without the data summarisation

process, the time taken for multi-view model re-training would

be exponential when the system is deployed and used progres-

sively.
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F. Multi-view Annotation Prediction

Once the sets of summarised bags (summarisedBagsfirst
and summarisedBagssecond) are acquired through the pro-

cess in Section III-E, the subsequent objective of CoAct-

nnotate is to predict the annotation accurately. The pre-

diction can be achieved in a multi-view approach, utilis-

ing the concept of co-training by allowing sensor classifiers

that were previously trained to predict the annotation for a

given set of summarised bags, corresponding to a particular

view. Let us denote yfirst as the predicted annotation for

summarisedBagsfirst and ysecond as the predicted annota-

tion for summarisedBagssecond. The corresponding sensor

classifiers in a view will predict the annotation according to a

consensus mechanism in the bags. Consequently, the concept

of co-training is applied to improve the overall prediction

model. This enables the views to benefit each other by being

able to continuously learn or improve the sensor classifiers

based on the mutual agreement of predicted annotations from

each view. The posterior probability of predicted annotation

(i.e. Pr(y|X)) from a view can be acquired by the inference

of all predicted annotations of sensor feature bags in the

corresponding view.

Irrespective of whether a mutual agreement (yfirst ==
ysecond) is reached or not, the posterior probability

(Pr(yagreed|X)) of the multi-view annotation predictor can

be inferred from the highest posterior probability of the

two views, either Pr(yfirst|Xfirst) or Pr(ysecond|Xsecond).
Moreover, if there is no mutual agreement between the two

views, the predicted annotation can be inferred from the

view that has the highest posterior probability. Conversely, a

random selection process would be used if the posteriors are

equivalent (i.e. Pr(yfirst|Xfirst) == Pr(ysecond|Xsecond)).
At the end of the prediction procedure for the summarised

bags, a special evaluation module is included to determine

whether the summarised bags need to be thrown to the

training pool where each sensor classifier could be re-trained

after performing the annotation prediction. The output of this

evaluation is denoted as macEvaluated. We call this process

Mutually Agreed Confidence (MAC) evaluation, whereby its

binary value is based on the condition of mutual agreement in

the multi-view prediction, and either the posterior probability

(Pr(yagreed|X)) is below a given threshold β or there is a

disagreement between predicted annotation and true annota-

tion. Hence, the purpose of this MAC evaluation module is

to determine the needs to improve the sensor classifiers if the

confidence level of multi-view annotation prediction is insuffi-

cient. Conclusively, the binary output of MAC evaluation can

be expressed with the following equation:

macEvaluated = MA · ceil
(

ceil(β−Pr(yagreed|X))+DA

2

)

(1)

where MA is the binary value indicating a mutual agreement

occurrence (i.e. MA ∈ {0, 1}), β is the parameter threshold for

confidence evaluation of the posterior Pr(yagreed|X) on the

predicted annotation, and DA is the binary value indicating

a disagreement between the predicted annotation and true
annotation (i.e. DA ∈ {0, 1}). In this case, the true annotation

refers to the actual label provided by the user through an

active feedback mechanism (i.e. an answer to the ESM-based

survey). Consequently, this true annotation is also used for the

following active learning component to improve the classifiers

in CoAct-nnotate (explained in Section III-G below).

G. Improvement of Sensor Classifiers

In this section, the process of improving sensor classi-

fiers is elaborated in detail, given the intrinsic output (i.e.

macEvaluated) produced in the previous process (annotation

prediction in Section III-F). In a real-world scenario, we take

the input from the mobile user as the consideration to im-

prove the performance of sensor classifiers for the multi-view

annotation prediction. The acquisition of such input is based

on the data collected by the ESM protocol, which inherently

conducts a query of annotation feedback from the mobile user

in an interactive manner. Hence, the process of improvement

for sensor classifiers is based on the binary condition of

macEvaluated with an additional input userAnnotation
acquired from the mobile user’s feedback. Within the improve-

ment process in the co-training module of CoAct-nnotate,

active learning is applied whereby the true annotation is

obtained through the ESM process and is used as the expected

annotation to label Su, for which the contained bags need

to be included in the training pool. Inherently, the usage of

semi-supervised learning in CoAct-nnotate (consisting of co-

training and active learning) is applicable for both generative

and discriminative base classifiers of the respective sensor

feature bags. When macEvaluated returns zero, there would

be no improvement process undertaken by CoAct-nnotate. In

other words, the feature bags (with the user’s annotation) will

not be included in the training pool.

To resolve the potential issue of data imbalance in the

summarised unlabelled bags (i.e. summarisedBags), up-

sampling (or oversampling) is applied to each sensor feature

instance in the corresponding bag, thereby increasing the num-

ber of possibly important data points (i.e. feature instances)

within a summarised sensor bag. The simplest form of up-

sampling is the duplication of a feature instance. In this case,

k-number of duplication is applied to a given summarised

feature instance, where k is obtained from a Poisson distri-

bution with a rate parameter δ (i.e. Poisson(δ)). The method

of upsampling is not restricted to instance replication because

other forms, such as generative approaches of sampling (also

known as generative oversampling [36], [37]), can be per-

formed on a given feature instance (extracted from a sequence

of feature instances in a summarised sensor bag). Ultimately,

these upsampled bags (labelled with userAnnotation) are

then added to TrainingPool to re-train all sensor classifiers.
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IV. EXPERIMENTAL EVALUATION

A. Dataset

We use the CrowdSignals dataset [11] for our analysis.

This dataset contains rich sensor data from smartphones and

wearables in the wild (annotated by participants). In our

experiment, the prediction of annotations is based on multiple

sensors in Android smartphones. For the construction of

instances in a bag, the temporal value of tδ is set to 30

minutes. Thus, each sensor bag in the MIL phase contains

at least the data points within the duration of t∆. For the

standard approach of preparation to train the classifiers, we

use a window size of one-minute time interval with 50%

overlapping windows of temporal segmentation.

The CrowdSignals dataset consists of daily logs for more

than 30 Android smartphone users. In our analysis, the datasets

of nine participants are sampled for the experiment, and

timestamped ESM labels are extracted from their data. Using

these labels, we simulate a scenario in which the users are

asked to respond to the ESM questions, at the time of these

timestamped labels. Although only smartphone sensor data are

used within the scope of our experiment, it should be noted

that other data sources (e.g. smartwatches, wearable sensors)

could be used to enrich the contextual inference to enable

better annotation prediction.

Given the rich amount of data collected in the CrowdSignals

campaign, we leverage the following sensor data: Accelerom-

eter, Gyroscope, Magnetic field, Rotational vectors, Battery,

Light, Screen status, Step counter and Pressure.

The following ESM labels (annotations) are derived from

the end timestamps of time-interval labels that the participants

recorded: Riding bus, Riding train, Riding light rail, Riding

ferry, Riding in a car, Riding a bicycle, Riding an elevator,

Riding an escalator, Riding a Scooter, Walking, Walking on

stairs, Drinking water and Playing video game.

B. Experimental Setup

During the initial training process of each sensor classifier,

only one sensor bag is used per ESM label provided by a

mobile user. Our model is trained with a limited amount

of sample data for all labels (i.e. one bag per class label),

which then need to perform annotation prediction progres-

sively throughout the simulated data collection in a day-to-

day manner. In other words, the objective of the experiment

is to perform annotation prediction accurately based on the

streaming of multidimensional sensor data during an ESM

study, given the influence of in-situ contexts of the mobile user.

Consequently, this experiment compares the performance of

annotation prediction by general approaches with our proposed

semi-supervised approach.

In our work, the density-based bag summarisation compo-

nent employs the same strategy as [38], [39] and [35] by

setting the parameters Eps = 0.3 and minpts = ln(n) for

the given DBSCAN algorithm (for density-based clustering),

where n is the number of feature instances in an unlabelled

sensor feature bag Siu. In the co-training process, a random

split operation is performed proportionally on the set of sensor

classifiers to produce two different views Vfirst (View 1) and

Vsecond (View 2). In this case, the number of distinct sensor

classifiers in a view is at least (n/2). At the end of the annota-

tion prediction process, the binary value of MAC evaluation is

calculated under the condition of a mutual agreement between

the views of sensor classifiers where yfirst == ysecond, and

its agreeable posterior (i.e. Pr(yagreed|X)) is being under a

certain threshold β = 0.9. Therefore, a MAC evaluation is

considered valid when it satisfies the output of Equation 1

where macEvaluated == 1. Before the summarised sensor

bags are added to TrainingPool (given a valid MAC evalua-

tion) for the sensor classifiers to be re-trained, the upsampling

operation is performed on the summarised sensor bag by using

the k-number of the instance replication strategy, where k is

withdrawn from the Poisson(δ) distribution with δ = 5. To

simulate the active learning component of the semi-supervised

module in CoAct-nnotate, we leverage the actual annotation

at the end time of the time interval based on the actual user

labels in the CrowdSignals dataset. For the time duration of

recent sensor data on the given annotation a, 30 minutes of

past mobile sensor data (i.e. tδ = 30 minutes) are used to

construct a bag (containing a sequence of raw sensor data) for

the respective sensor channel.

Since annotation prediction is crucial for mobile data col-

lection in the wild, we simulate an experiment in which

the end time of self-annotation (user-driven labelling) is the

time point of ESM annotation. All participants involved in

CrowdSignals data collection are mobile users who own

Android smartphones. Different phone models are noticeable

within the dataset since the capability of smartphones to sense

their context and environments varies. Due to the diversity of

sensors in different smartphone models, the performance of

annotation prediction can be greatly influenced by the limited

composition of sensor classifiers contained within a view.

As the base classifier of the mobile sensors, we lever-

age the following algorithms in our evaluation (using scikit-

learn [40]):

• Naive Bayes (NB)

• Support Vector Classifiers (SVC)

• Multilayer Perceptron (MLP) with 0.00001 as the L2

penalty (regularisation parameter), L-BFGS [41] as the

solver for weight optimisation and structure of two hidden

layers (consisting of five neurons for the first layer and

two neurons for the second layer)

• Random Forests (RF) with 100 trees

• Decision Tree (DT)

• k Nearest Neighbour (k-NN) with k = 1 (1NN)

For the baseline of annotation prediction, we leverage the

general approaches that can be used for annotation prediction

as follows:

• Multivariate time-window based annotation prediction

(denoted as MAP). In the MAP approach, only one

classifier is trained for all sensor feature dimensions and

instances in TrainingPool.
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Fig. 4. The granularity of data points in sensor bags.

• Non-multivariate time-window based annotation predic-

tion (denoted as 1C1S). In 1C1S approach, one classifier

is trained per sensor.

• 1C1S with co-training (denoted as Co-1C1S). In the Co-

1C1S approach, the concept of co-training is applied

to perform multi-view annotation prediction. The basic

operation of view split is similar to CoAct-nnotate, except

for the process of sensor classifiers improvement. For

the improvement process, the predicted annotation (i.e.

yagreed) is used to label Su, which will be included in

TrainingPool only if there is a mutual agreement (i.e.

MA == 1) between two views of sensor classifiers.

For both the MAP and 1C1S approaches, the training of

classifiers is based on the bags of all first occurrences of

each a in A. In other words, only one bag is used for a

class label during the training phase, which results in no

progressive learning over time. In contrast, both Co-1C1S and

CoAct-nnotate employ the concept of progressive learning by

a co-training mechanism. The only difference between Co-

1C1S and CoAct-nnotate is in the criteria for sensor classifier

improvement and cost-efficient performance of bag summari-

sation for Su in CoAct-nnotate. In the feature extraction

process of all annotation prediction approaches (MAP, 1C1S,

Co-1C1S and CoAct-nnotate), time-interval based temporal

segmentation is used for a given bag whereby the size of the

time window is set to 60 seconds (1 minute) with 50% overlap-

ping parameters. In terms of general evaluation performance

of annotation prediction, the correctness metric is used to

measure the accuracy of an annotation predictor. Consequently,

the correctness metric can be measured by calculating the

fraction of the total count of correct predictions over the

number of annotation prediction, as expressed in the following

equation:

Correctness =

∑v
u=1 annotation

u
correct

v
(2)

where v is the total number of annotation predictions and

annotationu
correct is the binary value whether the u-th anno-

tation prediction is correct or not. To evaluate the performance

of the systems empirically, the experiment is performed with

10 iterations per base classifier on each approach.

C. Results

As shown in Figure 4, we leverage nine sensor channels

(mentioned in Section IV-A) as the source of data streams,

and use those to predict the ESM labels in the dataset.

In our dataset, there are several instances of incomplete

sensor channels that are due to the smartphone hardware. For

instance, user E’s dataset lacks gyroscope, rotational vectors,

step counting and air pressure. Although air pressure data are

available for users B, C and D, the step counter sensor channel

is missing for user B. Similarly, battery information is missing

for user C within tδ (30 minutes) before all occurrence of

ESM annotations. Due to the variability of sensors that may

be missing and their inconsistent sampling in a given Su,

this increases the difficulty of ESM label prediction. Despite
the inconsistent number of data points (with many noticeable

outliers) for heterogeneous sensor channels, shown in Figure 4,

the time lengths of data points are varied with fewer outliers,

as shown in Figure 5. In this case, the time length tlength can

be computed by tlength = tmax − tmin, where tmax is the

maximum timestamp and tmin is the minimum timestamp of

data points in a given sensor bag Sia.

Fig. 5. The time length of data points in sensor bags (seconds).

Although multiple metrics can be used for evaluating the

performance of classifiers, we leverage the correctness metric

as the dominant measurement for the performance of anno-

tation prediction. As shown in Table I, we believe that one

classifier should be trained for each sensor (refer to the 1C1S

experiment result). By observing the average correctness val-

ues of base classifiers from our iterative experiment, the maxi-

mum performance gain of 28.9% is noticeable by training one
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TABLE I
CORRECTNESS OF ANNOTATION PREDICTION (NORMALISED FROM 0 TO 1)

User ID Number of Classes
MAP 1C1S Co-1C1S CoAct-nnotate

NB SVC MLP RF DT 1NN NB SVC MLP RF DT 1NN NB SVC MLP RF DT 1NN NB SVC MLP RF DT 1NN

A 3 0.125 0.125 0.125 0.125 0.15 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.138 0.138 0.188 0.188 0.138 0.125 0.613 0.4 0.7 0.713 0.863

B 9 0.14 0 0 0.067 0.033 0.087 0.173 0.207 0.18 0.213 0.18 0.167 0.181 0.125 0.131 0.106 0.144 0.144 0.281 0.413 0.363 0.563 0.706 0.744

C 10 0.232 0.246 0.008 0.128 0.129 0.169 0.304 0.289 0.297 0.293 0.299 0.288 0.283 0.215 0.016 0.22 0.269 0.275 0.295 0.515 0.437 0.727 0.785 0.818

D 10 0.175 0.206 0.206 0.121 0.156 0.079 0.281 0.262 0.275 0.271 0.279 0.265 0.357 0.268 0.17 0.284 0.29 0.281 0.343 0.386 0.268 0.679 0.754 0.792

E 9 0.088 0.256 0.26 0.089 0.073 0.129 0.229 0.236 0.23 0.235 0.228 0.245 0.198 0.277 0.262 0.194 0.175 0.21 0.19 0.296 0.22 0.463 0.553 0.579

F 4 0.18 0.2 0.2 0.26 0.26 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.285 0.305 0.345 0.4 0.33 0.185 0.235 0.585 0.4 0.83 0.89 0.9

G 11 0.033 0.597 0 0.10 0.153 0.10 0.147 0.133 0.15 0.157 0.15 0.137 0.11 0.206 0.097 0.09 0.119 0.129 0.258 0.561 0.729 0.858 0.877 0.884

H 10 0.093 0.139 0.139 0.22 0.141 0.247 0.3 0.314 0.312 0.307 0.307 0.306 0.26 0.222 0.148 0.235 0.24 0.286 0.37 0.441 0.421 0.951 0.891 0.915

I 7 0.148 0.093 0.093 0.109 0.161 0.351 0.335 0.317 0.322 0.367 0.337 0.361 0.131 0.109 0.085 0.093 0.093 0.111 0.528 0.748 0.716 0.781 0.77 0.763
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Fig. 6. The average progression of correctness over the time for sampled
users.

classifier per sensor (i.e. 1C1S) over a simplistic multivariate

setup (i.e. MAP). However, the repeated measure of ANOVA

test found a statistically significant mean difference between

the correctness of MAP and 1C1S, F (1, 1078) = 152.2,

p < .001. The results of the two-sample t-test (assuming

unequal variance) also found a statistically significant evidence

of a difference of mean correctness between MAP and 1C1S,

t(df = 1004.7) = 12.34, p < .001, 95% CI for the difference

in means [0.06, 0.08].

It should be noted that both MAP and 1C1S do not use

progressive learning. In this case, the models are constructed

based on the first set of sensor feature bags for each label.

Hence, the overall performance is insufficient. Even by in-

cluding the co-training process for progressive learning (refer

to Co-1C1S), the difference in correctness measurements is

not substantial in comparison with non-progressive learning.

This argument is evident from the results of two-sample t-test

(assuming unequal variance) between progressive learning (i.e.

Co-1C1S) and non-progressive learning (i.e. MAP and 1C1S),

which found no statistically significant evidence of a difference

for the mean correctness values, t(df = 1145.3) = 0.715,

p = 0.475, 95% CI for the difference in means [-0.01, 0.01].

Ultimately, our proposed CoAct-nnotate pipeline can sig-

nificantly improve annotation prediction (increasing average

correctness by 35.94%) over all baselines. From the results

of the two-sample t-test assuming unequal variance, there

is statistically significant evidence of a difference of mean

correctness between CoAct-nnotate and all baselines, t(df =
588.2) = 33.302, p < .001, 95% CI for the difference in

means [0.37, 0.42]. In other words, co-training alone (refer to

the result of Co-1C1S) is not enough to enhance the predictive

performance over time in daily annotation tasks. It is evident

that by combining both co-training and active learning (i.e.

CoAct-nnotate), the outcome becomes progressively accurate

(as shown in Figure 6).

As shown in Figure 6, the average correctness values are

aggregated per user over time (for the iterative experiment on

all base classifiers), spanning from late August to the end of

November in 2016. In fact, this is aligned with the duration of

the data collection campaign of the CrowdSignals dataset in

which each user participated for four to six weeks of automatic

logging of their smartphone sensor data in daily life.

From the visualisation of average correctness over the time,
we can conclude that our proposed CoAct-notate clearly out-

performs all the baseline approaches in annotation prediction

in most the cases. For the co-training approach without active

feedback from the users (Co-1C1S), the average performance

degrades at an alarming pace in comparison with MAP and

1C1S. Unfortunately, the weakness of original co-training is

known to result in degrading performance over time if the

sampling bias shifts towards the unlabelled bags with mutual

agreement and misclassification of class labels (i.e. incorrect

annotation predictions). Therefore, this weakness is tackled

in our proposed framework by integrating active learning

(feedback from the users) to reduce the bias shifting towards

the misclassification of class labels.

For over 50% of the time length of annotation prediction,

our CoAct-nnotate visually demonstrates steady improvement

of average correctness, which is also supported by the trend

depicted in Figure 7. We plot the smooth line of the linear

model (using a second degree polynomial term) on all cor-

rectness values of classifiers in the iterative experiment on

all users within the normalised scale of time. Thus, we see

a stable increase of the performance of CoAct-nnotate by the

early convergence starting from 40% of the time duration of

annotation prediction. Considering there are 13 annotations in
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Fig. 7. The progression of correctness over the time for MAP, 1C1S, Co-1C1S
and CoAct-nnotate.

total that can be predicted for users, the baseline accuracy

can be set to 7.7% (1/13) for an application of annotation

prediction. Therefore, it can be concluded that our proposed

CoAct-nnotate pipeline can guess the correct user annotation

50% of the time, which is significantly above this baseline.

It should be noted that our experiment is limited to eval-

uation in which we assume the test bags to have active

feedback from users. In a real scenario of ESM studies, users

might ignore such survey notifications and not provide any

feedback on the underlying predicted annotations. Further,

the correctness measure presented in this paper is based

on the notion of single-annotation prediction. If the ESM

survey question is presented with multiple choices, then top-k
predicted annotations can be displayed based on their ranked

posterior probabilities. However, an option of ‘other’ should be

displayed in an interactive annotation process of a real-world

application to provide an alternative for the user that reveals

more choices or inputs an answer via free text input. Our study

aims to reduce such a choice overload issue during the ESM

annotation process. An immediate challenge for future work is

to measure the real-time performance of annotation prediction

and evaluate it based on actual experience (in terms of user

burden). Given such challenges, future research is required to

improve the techniques used in ESM studies, leading to fewer

interruptions and burdens for participants.

Ideally, the model training should be performed in a pow-

erful instance (e.g. in the cloud) because mobile devices are

restricted in terms of their computational resources. Therefore,

the time taken to perform training on mobile devices is not

evaluated in our current study. The summarisation technique

that we applied in the experiment aims to derive a more

compact representation of the given feature bags. Our previous

results [35] show that the applied summarisation technique

tends to maintain a relatively stable and reliable inter-rater

agreement between machine learning models. Training the

model on smart devices should be considered as another

significant challenge that will lead to more intelligent mobile

sensing applications (e.g. for assistive technologies). Never-

theless, the main contribution of this paper is to improve

the model of annotation prediction over time by using both

concepts of co-training and active learning.

V. CONCLUSION

This paper presents a framework to reduce user burden

in ESM studies. Specifically, our work shows how semi-

supervised learning can be used to predict the ESM labels

that could be relevant to users at the time of questioning.

We demonstrate the ability to predict the annotations before

they are acquired from the users through an active feedback

mechanism. Through the application of both co-training and

active learning in our proposed multi-view models, the overall

accuracy of annotation prediction systems is increased by

35.94% in comparison with conventional approaches. There-

fore, researchers can customise the scheduling of ESM ques-

tionnaires to collect labels from all required instances. This can
help overcome situations in which less frequent instances are

not captured due to the limited sampling rate of ESM studies.

CoAct-nnotate is designed as a system for generic prediction

of ESM labelling. Although the target application in this paper

is for activity recognition, this approach can also be used

for other types of applications, such as mood or emotional

changes (assuming different sets of sensors are deployed, e.g.

wearables for emotion prediction). Moreover, we envision that

the future intelligent digital assistants (e.g. Amazon Alexa,

Google Assistant and Microsoft Cortana) would be able to

infer and support daily user activities and tasks [42], [43]

through ubiquitous sensing. In this case, our proposed frame-

work can be used to improve such virtual assistants to be more

aware of the contexts of a mobile user and adapt accordingly

based on active feedback.

Evaluation of actual user burden could be considered in

future work of an intelligent ESM annotation process. In this

study, we assume a scenario in which the user provides an

annotation at a given time for an experiment performed on

an existing dataset. Moreover, the selection of appropriate

features and learning parameters can have direct effects on the

accuracy of an annotation prediction. In our study, we chose

the parameter values heuristically. Therefore, an efficient and

intelligent selection of features and learning parameters (which

also evolves over time based on user contexts) would require

further study in this era of ubiquitous computing research.
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