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Abstract—A wearable based long-term lifelogging system is de-
sirable for the purpose of reviewing and improving users lifestyle
habits. Energy harvesting (EH) is a promising means for realizing
sustainable lifelogging. However, present EH technologies suffer
from instability of the generated electricity caused by changes of
environment, e.g., the output of a solar cell varies based on its
material, light intensity, and light wavelength. In this paper, we
leverage this instability of EH technologies for other purposes, in
addition to its use as an energy source. Specifically, we propose to
determine the variation of generated electricity as a sensor for
recognizing “places” where the user visits, which is important
information in the lifelogging system. First, we investigate the
amount of generated electricity of selected energy harvesting
elements in various environments. Second, we design a system
called EHAAS (Energy Harvesters As A Sensor) where energy
harvesting elements are used as a sensor. With EHAAS, we
propose a place recognition method based on machine-learning
and implement a prototype wearable system. Our prototype
evaluation confirms that EHAAS achieves a place recognition
accuracy of 88.5% F-value for nine different indoor and outdoor
places. This result is better than the results of existing sensors
(3-axis accelerometer and brightness). We also clarify that only
two types of solar cells are required for recognizing a place with
86.2% accuracy.

Index Terms—Sensor, Place Recognition, Wearable, Energy
Harvesting, Machine Learning, Lifelog

I. INTRODUCTION

Reviewing and improving peoples lifestyle habits is essen-
tial to treat lifestyle-related diseases such as diabetes, hyper-
tension, and mental health issues. Lifelogging system records
the personal data generated by a users behavioral activities.
It is attracting attention for the purpose of understanding
life patterns and/or lifestyle habits. Nowadays, a lifelog is
recorded automatically by a smartphone or wearable activity
trackers. For example, the mobile application “Moves”1 can
track location, activities, and transportation. Sonys lifelogging
application “Lifelog”2 tracks which applications are used and
what their usage time is. It also logs music played, photos
taken, etc. An activity tracker adds more detailed information
such as steps, heart rate, and sleep status.

One piece of critical information in the lifelog is location.
Recording an accurate position is not essential, but a room-

1Moves - Activity Diary for iPhone and Android :
https://moves-app.com/

2Lifelog - innovative activity tracker Android app from Sony :
https://www.sonymobile.com/global-en/apps-services/lifelog/

level location (which we call place, hereafter) is required for
assessing a users lifestyle habits or life pattern. Basically, the
aforementioned applications including Moves, record location
using GPS embedded in a smartphone. GPS is ubiquitous but
it does not work indoors [14]. Therefore, it can only provide
a building-level location. To record room-level indoor places
such as an office room, meeting room, lecture room, or toilet,
other localization technologies are required.

For indoor places, WiFi-based localization [5], [6], [8], [18],
[26] is the most popular because WiFi access points have al-
ready been deployed widely and everyone has a WiFi-enabled
smartphone. However, from the viewpoint of long-term lifelog-
ging for lifestyle improvement, smartphone-based approaches
are not suitable. The current mobile operating systems do not
allow applications to keep tracking the location in the back-
ground because of battery conservation. Active/passive RFID-
based indoor localization systems [2], [27] are also popular
and able to achieve cm-level accuracy. However, they need
some infrastructure (RFID tags/RFID readers) in environments
and continuous/regular power charging of tags/readers for
daily sensing. For our purpose, iBeacon3 from Apple, where
iOS keeps monitoring the Bluetooth signals in the operating
system, might be the best solution. However, it is costly
because it requires the deployment of new beacon tags into
each place and the perpetual maintenance of their batteries. No
wearables (including Apple watch) can keep sensing iBeacon
signals continuously because that would drastically deplete the
small battery of a wearable.

In this paper, we propose a wearable lifelogging system
called EHAAS (Energy Harvesters As A Sensor), which
utilizes a set of different energy harvesting elements as a
sensor for recognizing places. Energy Harvesting (EH) has
been expected to be used as a power source for running
sensors and processors [1], [23]. It became a reality because
the power consumption of those devices becomes smaller
every year. In April 2018, a smartwatch called PowerWatch4,
which uses thermoelectric EH, was released. It can count the
number of steps by a low power accelerometer. However, the
generated electricity is not enough to run other sensors or a

3iBeacon :
https://developer.apple.com/ibeacon/

4Matrix PowerWatch :
https://www.powerwatch.com/
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network module for localization. Therefore, we believe that a
fundamentally different approach is necessary to realize room-
level localization with wearables.

Our key idea is to leverage a disadvantage of EH that the
amount of generated electricity depends on the surrounding
environment. Generated electricity of a solar panel varies
based on the light conditions such as brightness, wavelength,
and angle of the light source. Also, the generated electricity
changes when a different material is used for a solar panel.
Kinetic EH also has a disadvantage in that it only generates
power when it moves physically. Leveraging the instability of
EH elements as a feature of places, the variation of generated
electricity could be used as a sensor for place recognition. If
EH works as a sensor as well as a power supply, there will be
a big potential for realizing a place recognition system with
lower power consumption. The contributions of this paper are
summarized as follows:

• First, to investigate the feasibility of our idea, we evaluate
the characteristics of various EH devices such as solar
cells, peltier elements, and piezo elements. According to
previous research, the characteristics of EH devices have
not been studied well enough to evaluate the possibility
of a sensor to recognize places. We show that EH devices
are not only substitute for existing sensors, but can also
be used as a sensor that is suitable for place recognition
through the characteristic evaluation of EH devices.

• Second, we evaluate the amount of generated electricity
in various places to establish a relationship between
places and generated electricity in those places. The target
places in this paper comprise common places in our
university such as a classroom and a restroom, aiming to
apply the developed technology to an office environment.
We show that each place generates a unique amount of
electricity according to its environment or the movement
of a user, and EH devices have a large potential for
recognizing places.

• Finally, we implement a prototype of a wearable device
combining multiple EH elements as a sensor. Through
experiments with the prototype, we confirm that EHAAS
has achieved a place recognition accuracy of 88.5% F-
value for nine different places including indoors and
outdoors in the university. Additionally, we compare this
result with the accuracy recognized by existing sensors
such as accelerometers and luminometers. As a result, a
higher accuracy is obtained with EHAAS. Furthermore,
we clarify that this system with only two types of solar
cells can recognize a place with 86.2% accuracy.

The rest of this paper is organized as follows. Section II
reviews existing work and energy harvesting elements related
to this paper. The preliminary measurements are provided
in Section III, and Section IV presents our proposed place
recognition system with energy harvesters. In Section V, we
describe the performance evaluation and evaluation results.
Finally, Section VI concludes this paper.

II. RELATED WORK

As related work, we summarize existing studies of both
indoor localization techniques and energy harvesting technolo-
gies.

A. Indoor localization

Indoor localization techniques [28] have been widely stud-
ied. Sensor data and algorithms used for localization are
diverse, depending on the target accuracy [19]. In this paper,
we only consider the techniques that are feasible on ordinary
devices and are for room-level localization (the target of this
paper) [15]. Examples include a radio-based technique that
utilizes WiFi or Bluetooth, a dead reckoning with inertial
sensors [22], and acoustic fingerprinting [24].

WiFi-based localization methods usually adopt the tech-
nique called fingerprinting [4]. This technique surveys a fin-
gerprint of radio signals at various places in advance. Based
on the similarity of fingerprints, it estimates the location. In
the case of BLE beacons [15], [29], the method is basically the
same, and Kyritsis A.I., et al. [15] achieved 81.17% ∼ 100%
accuracy (90.2% on average) with fingerprints at 63 different
places in seven rooms. However, it is difficult to continuously
scan WiFi or BLE signals for lifelogging on wearable devices
that only have a small battery. In fact, most of the studies such
as [15] use a laptop or a smartphone, not a smartwatch, for
the experiment.

As a study of localization using a smartwatch, Lee et
al. have proposed a place identification method for a home
environment [17] that utilizes activity fingerprinting obtained
by a motion sensor. However, since this research is based on
the premise that the movement of an arm is different for each
room, it cannot identify when the same work (PC or meeting)
is done in different rooms, like in a university or office. Also,
similar to the case with radio signal scanning, continuous use
of the acceleration sensor consumes battery power and is not
realistic for long-term lifelogging by a wearable device.

B. Energy harvesting elements

Below, we introduce representative energy harvesting ele-
ments.
Photovoltaic (Solar cell): Solar cells, which use the photo-
voltaic effect, are the most popular energy harvesting elements
because they are inexpensive and have high flexibility in size.
There are several kinds of materials having a photovoltaic
effect. The amount of generated electricity depends on the kind
of material in addition to the brightness and wavelength. Rep-
resentative materials are amorphous silicon, polycrystalline
silicon, and organic thin films. Solar cells are widely used
in calculators and traditional watches. Sometimes, they are
attached to bags and backpacks. However, they are not used for
the latest wearable devices because of the need for a small cell
size. We can expect that, in the future, they will be embedded
into clothes because RIKEN has released a novel solar cell
that is launderable as well as pasteable using an iron.
Kinetic (Piezo element): A piezoelectric element utilizes
the piezo effect that generates electricity by distortion. As
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Fig. 1. Experimental environment for measuring the solar cells

an example of use as a power supply, the power generating
floor produced by Soundpower Corporation5 in Japan is well-
known. However, this element is usually used as a pressure
sensor. We used it for sensing the posture of a worker on a
chair [21] and for sensing the weight distribution on a glove
[7]. H. Kalantarian et al. have used a piezo element as an insole
pressure sensor and a power source [11]. Also, S. Khalifa et
al. have used it as a motion sensor and a power source [13].
However, in all of these research studies, including our glove,
electricity is not generated unless it is in force or in motion.
Therefore, it cannot be used for recognizing places.
Thermoelectrics (Peltier element): The peltier element is
an energy harvester using the peltier effect that generates
electricity by a temperature difference. Usually, it is used for
cooling a CPU by flowing current to the element. In April
2018, a smartwatch called PowerWatch using a peltier element
as a power source was released. This watch is equipped
with LCD, BLE, and a step counting function. Since the
temperature difference is critical, it is a problem that electricity
is not generated when the body temperature and the outside
air temperature are similar.

III. PRELIMINARY MEASUREMENT

Prior to designing the place recognition system, we inves-
tigate the characteristics of the following energy harvesting
elements: solar cells (5 types), piezo element, and peltier
element.

A. Generated-electricity measurement system

For the preliminary experiment, we developed a system that
can measure the amount of generated electricity of energy
harvesters (right figure in Fig. 1).

We utilize an all-in-one Arduino-compatible and Bluetooth
Low Energy (BLE) development board (Adafruit Feather nRF
52 Bluefruit LE) that has an ARM Cortex M4F processor
clocked at 64MHz and eight analog inputs. Each energy

5Soundpower corporation :
http://www.soundpower.co.jp/

harvesting element is connected to an analog input. The
voltage value is acquired as a digital value by AD conversion
in the board. The sampling frequency of the voltage value is
50 Hz, and data is transmitted to the laptop via BLE. On the
laptop, Python scripts draw graphs and accumulate data.

In addition, we add SenStick [20] on the exper-
imental board. SenStick is an ultra-tiny multi-sensing
board having eight sensors: 9-axis (MPU-9250), tempera-
ture/humidity (SHT20), illuminance (BH1780GLI-E2), pres-
sure (LPS25HBTR), and ultraviolet (VEML6070). We use it
to collect the data for comparison.

B. Solar cells

First, we investigate solar cells, which are widely used
and easy to buy. There are several types of solar cells with
different materials and manufacturing methods, and different
characteristics against light conditions such as brightness and
wavelength. In this paper, we prepared five small solar cells
sold in Japan (Table I) and investigated their characteristics.
The features of these solar cells are as follows.

• SC1, SC4 (Polycrystalline silicon):
Polycrystalline silicon is currently the most popular solar
cell. SC1 has a glass coating on the surface, while SC4
has no glass coating.

• SC2 (Organic thin film):
Organic thin films are solar cells that can output high
voltage even in a low light environment. They increase the
light receiving sensitivity to visible light by adsorbing a
dye on the surface of titanium oxide. From the viewpoint
of manufacturing cost and design ability, it is expected
that this solar cell will be widely applied.

• SC3, SC5 (Amorphous silicon):
Amorphous silicon is a kind of silicon with an irregular
crystal structure. Although the energy conversion effi-
ciency is lower than the polycrystalline silicon type solar
cell, it can be thinner than polycrystalline silicon and can
keep a high voltage output even at high temperature.

1) Characteristic against the intensity of the light: Fig. 1
shows the experimental environment where Panasonics silica
bulb LW100V 54W was used as a light source in a dark room.
We investigated the characteristics against the intensity of the
light by changing the distance between the experimental board
and the light source.

Fig. 2 shows the amount of generated electricity of each
solar cell. The generated electricity of all the solar cells
increased linearly according to the light intensity. In particular,
SC2 and SC3 generated more electricity than the others. This
suggests the possibility that these solar cells can be used as
illuminance sensors for distinguishing places.

2) Characteristic against the wavelength of the light: Next,
we investigated the characteristics against the wavelength
of the light. In this experiment, we measure the quantum
efficiency (QE), the fraction of photons incident on the solar
cell that are converted into electrons without loss, because the
energy conversion efficiency of solar cells depends on QE.
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TABLE I
INVESTIGATED SOLAR CELLS

SC1 SC2 SC3 SC4 SC5

Picture

Manufacture SUNYOOO solar Limited. Fujikura VIMUN SHARP Panasonic
Type Polycrystalline silicon Organic thin film Amorphous silicon Polycrystalline silicon Thin amorphous silicon
Size (mm2) 80×60 91×60 30×11 67×40 112×73
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Fig. 2. Generated electricity against the intensity of the light

We utilize a solar simulator (Bunko-keiki, CEP-2000RP),
shown in Fig. 3, to measure QE under the condition that the
intensity of the irradiation light is constant, the wavelength is
set to 10 different values in the range 300 nm ∼ 1200 nm.

Fig. 4 shows the normalized quantum efficiency (QE)
against the wavelength. Small peaks around 800 nm and 850
nm are waveforms generated when the measuring equipment
switches light sources, so we ignore them.

We can observe that the sensitivity against wavelength
is different among the types of solar cells. Therefore, this
suggests that by utilizing multiple solar cells together, we
can get information about the combination of wavelengths at
a certain place. At a glance, there is no difference, but in
recent offices, different kinds of lighting may often be used
in different rooms, according to the purpose of room. This is
because the condition of the lighting can affect workers mental
state, such as emotion [10] and fatigue [12], and optimizing the
lighting environment in workplaces is regarded as important
[16]. Hence, multiple kinds of solar cells may distinguish
different places by the characteristic wavelength distribution
of each place.

C. Piezo element

To investigate the characteristics of piezo elements, we
developed a measurement system (Fig. 5) equipped with a
piezo element and SenStick, which can measure the generated-

Radiation area

Solar cell

Solar simulator (Bunko-keiki, CEP-2000RP)

Measured Solar cells (SC1-5)

Control the wavelength 
of irradiation light

SC1 SC2 SC3 SC4 SC5

Install

Fig. 3. A solar simulator for measuring quantum efficiency
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Fig. 4. Normalized QE against wavelength

electricity of a piezo element and 9-axis motion simultane-
ously.

In this experiment, we installed LDT0-028K, a piezoelectric
film of Measurement Specialties, Inc., parallel to the Y-Z plane
in the measurement system. This means that the piezo element
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Fig. 5. A measurement system of piezo and 9-axis motion

(a) Acceleration (b) Generated electricity

Fig. 6. Characteristic of the piezo element against the motion

will curve in the X-axis direction according to the movement.
Fig. 6(a) shows the result of acceleration values of the X, Y,
Z axes. Fig. 6(b) shows the generated electricity of the piezo
element, which includes raw data and the data smoothed by
the moving average filter (time window is 0.2 sec).

This result suggests that the generated electricity of a piezo
element has some correlation with the movement of the object
and can be considered as a sensor for detecting motion.

D. Peltier element

In the investigation of peltier elements, we observed the
generated electricity by moving between indoors and out-
doors. Fig. 7 shows the developed wearable system for this
experiment, which equips a peltier element inside a band. The
temperatures of the atmosphere and skin surface are measured
by SenStick and Empaticas E4 wristband6, respectively.

Fig. 8(a) represents the transition in skin temperature and
ambient temperature. Fig. 8(b) shows the generated electricity
of the peltier element, the raw data, and the data smoothed
by the moving average filter (2 sec of time window). We can
observe a high correlation between the temperature change and
the generated electricity. This suggests that the peltier element
can be used as a sensor to distinguish indoors or outdoors if
we assume that the skin temperature is almost constant.

E. Summary of measurement results

We summarize the preliminary experiment as follows.
• Solar Cells

Since the characteristics against brightness and wave-
length are different depending on the material, a com-

6Real-time physiological signals — E4 EDA/GSR sensor :
https://www.empatica.com/research/e4/

SenStick

Peltier 
element

(a) Overall view

Peltier 
element

(b) Wearing view

Fig. 7. A wearable measurement system for peltier element

(a) Temperature (b) Generated electricity

Fig. 8. Characteristic of the peltier element against the temperature difference

bination of several types of SCs is expected to work well
for place recognition.

• Piezo element
Since it works like accelerometer, a piezo element can be
used to recognize the movement of a human. However,
it may not be suitable for places where the user stays
stationary.

• Peltier element
A peltier element can be used for indoor or outdoor detec-
tion. However, the peltier element has a usage restriction
in that it must be in contact with the skin.

In this section, we investigated the capability of each EH
element. In the following sections, we try to develop a place
recognition system by building a sensor device and evaluating
it through experiments. In particular, considering the use cases
in offices or workplaces, we created a nameplate-like sensor
device. Following the knowledge obtained in this section, we
loaded only multiple solar cells and a piezo element on the
device7. Furthermore, we implemented all the EH elements
except for the peltier element to find the best combination of
EH elements.

7The peltier element was excluded from the device because it has restric-
tions on hardware implementation with respect to the available environment
and shape of devices. First, it does not work in a hot environment such as
in summer, because it always needs a difference between the temperatures of
the skin and the air to generate electricity. Furthermore, it also has to keep
contact with the skin and suitable shapes of devices for continuous operation
is limited for office use. These are unsuitable properties for a nameplate-like
device.
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IV. A PLACE RECOGNITION SYSTEM WITH ENERGY
HARVESTERS

Based on the result of the preliminary measurements, we
design a place recognition system where several types of
energy harvesters are used as a sensor. We call it EHAAS,
hereafter.

A. Assumed lifelogging service

The goal of EHAAS is to realize long-term lifelogging
composed of a time series of visited places in the working
environment. The right side of Fig. 9 shows an image of the
output of EHAAS.

B. EHAAS architecture

EHAAS consists of a hardware component and a soft-
ware component (algorithm). The former utilizes Bluefruit
of Adafruit as the main board, to which multiple energy
harvesting elements are connected as shown in the left side
of Fig. 9. The electricity generated by the energy harvesting
elements is used for both energy and the sensor.

In the main board, the following four modules are imple-
mented.

1) A/D converter: All the generated electricity is input
into an A/D converter on the board. The resolution and
sampling rate of the A/D converter on Adafruit Bluefruit are
10-bit (01023) and 16Hz respectively. The input voltage is
adjusted to below 3.6V by the proper resistance. This means
that every digit returned from the ADC is 3.515625mV (=
3600mV/1024).

2) Feature extraction: We use several types of solar cells
and a piezo element for extracting the features of places
because the amount of generated electricity will depend on
the environment such as light intensity, light wavelength, tem-
perature, and the wearers movement. This module generates
feature vectors composed of the generated electricity of each
element every 2 seconds.

3) Place recognition: This module classifies the places
based on a movement feature and an environmental feature.
Here, the movement feature is abstracted into the same length
as the environmental feature and combined. Finally, the classi-
fier generated by machine learning decides the most probable
place. The details will be explained in the next subsection.

4) Energy storage: All the generated electricity is charged
into energy storage, such as a capacitor. However, the imple-
mentation of this part is beyond the scope of this paper.

C. Place recognition model

We construct the model for place recognition by using ma-
chine learning. Through preliminary investigations, we employ
Random Forests (RF) [3] as the best among various machine
learning algorithms.

Training data are needed for constructing the model. The
feature used as the training data is the amount of generated
electricity. This is obtained as the movement feature or the
environmental features. As features, statistical values: aver-
age, variance, sum, median, maximum, minimum, difference
between maximum and minimum, are calculated for every 2
second interval. Also, place labels are assigned to each interval
as ground truth.

It is difficult to construct a model that can adapt to all pos-
sible places, because people stay/pass various places in daily
life. However, one of the goals of this system is lifelogging in
a building (e.g., workplace, school, etc.), and the number of
places where a user often stays in such an indoor environment
is limited. We assume the number of places visited by one user
is no more than 10, such as an office, meeting room, toilet,
stair, corridor, elevator, outdoor, cafeteria, and so on. There-
fore, a training dataset could be prepared in each environment,
and in this paper it was collected at representative places in
our university.

Additionally, the training data should be collected consider-
ing various situations such as different time periods (morning,
evening, night) and for different weather (sunny, cloudy, rainy,
etc). Because our target is to recognize a place, not the
behavior of each person, we do not need to develop each
persons model. Based on this, we believe that it is sufficient to
collect 9 datasets that consider time and weather differences
from no more than 10 places.

V. PERFORMANCE EVALUATION

We evaluate the usefulness and accuracy of our proposed
system through experiment.

A. Evaluation environment and scenario

As a target environment, we select our university campus
where staff and students move among several buildings, rooms,
and facilities within a stay. There are various kinds of places on
the university campus, such as classrooms, laboratories, toilets,
shops, and cafeterias. However, in such an environment, GPS
cannot distinguish the room-level places. Even when walking
outdoors between buildings, it is hard to receive GPS signals
and calculate the position because the duration spent outdoors
is too short. Fig. 10 shows a concrete movement scenario and
the collected data. In this experiment, we target the following
nine places: Laboratory, Seminar room, Toilet, Stairs, Elevator,
Corridor (1st floor), Corridor (4th floor), Outdoors, and Cafe-
teria. In Fig.10 (a) and (b), we show that each place generates
a unique amount of electricity according to its environment or



(a) Generated electricity of Piezo element

(b) Generated electricity of Solar Cell 1
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Fig. 10. Example of collected data

the movement of a user, and EH devices have a big potential
for recognizing places.

B. Data collection

To collect the data, we developed an experimental board
where a microprocessor and several energy harvesting el-
ements are affixed on the surface, as shown in Fig. 11.
Five different kinds of solar cells are attached to the board
horizontally. A piezo element is set at the center. We adjust
the weight attached to the tip of the piezo element to gen-
erate a moderate vibration (electricity) according to the body
movement. We attached SenStick for measuring ground truth
data of acceleration, gyro, magnetic, temperature, and light
intensity.

We collected data in three days with different weather and
at different times. The first day was rainy, the second day was
cloudy, and the third day was sunny. The data was collected
in different periods of time such as morning, afternoon, and
evening including night. A data collector subject wearing this
device visited nine places by walking along a predetermined
route. Finally, we collected 10 sets of data in different situa-
tions.

We calculated seven features (average, variance, sum, me-
dian, maximum, minimum, difference between maximum and
minimum) every two seconds from the collected data. The
window size (two seconds) was decided empirically. As a re-
sult, a dataset with 42 features (seven features × six elements)
was created. Moreover, the ground truth label was applied by
checking the video recorded in the experiment. Similarly to
the features, we assigned place labels for every 2 seconds.
We performed the same process for all the collected data and
created ten case datasets.

SC3

SC1 SC2SC5

SC4

PiezoSenStick

Fig. 11. Prototype wearable device

C. Evaluation method

We used a leave-one-case-out cross-validation for the eval-
uation. Out of the ten cases collected in different situations,
one case was excluded as a test dataset for evaluation, and
the remaining datasets were used for constructing a place
recognition model by machine learning (Random Forest). We
carried out this process for each of the 10 datasets and
evaluated the accuracy of our proposed place recognition
system, trying to avoid overfitting and minimize generalization
errors. Also, we evaluated the effectiveness of this method by
comparing the accuracy with that derived by a conventional
method based on an illuminance sensor and accelerometer.



TABLE II
PLACE RECOGNITION ACCURACY OF THE PROPOSED SYSTEM

(SENSOR: ALL ENERGY HARVESTING ELEMENTS)

Precision Recall F-value Num. of data

Lab 0.969 0.944 0.957 7899

Seminar Room 0.701 0.752 0.725 1767

Cafeteria 0.837 0.725 0.777 945

Corridor 4th 0.537 0.711 0.612 464

Toilet 0.955 0.823 0.884 434

Corridor 1st 0.635 0.738 0.683 427

Stairs 0.764 0.86 0.809 350

Outdoors 0.97 0.855 0.909 345

EV 0.721 0.913 0.805 161

avg / total 0.887 0.877 0.88 12792

TABLE III
PLACE RECOGNITION ACCURACY OF THE CONVENTIONAL SYSTEM

(SENSOR: ILLUMINANCE)

Precision Racall F-value Num. of data

Lab 0.872 0.896 0.883 6867

Seminar Room 0.418 0.350 0.381 1416

Cafeteria 0.402 0.367 0.384 1340

Corridor 4th 0.450 0.508 0.478 366

Toilet 0.483 0.413 0.445 516

Corridor 1st 0.435 0.477 0.455 384

Stairs 0.600 0.661 0.629 313

Outdoors 0.623 0.845 0.718 317

EV 0.410 0.423 0.416 182

avg / total 0.697 0.707 0.701 11701

In addition, we compared the accuracy among different
combinations of energy harvesters to investigate the possi-
bility of reducing the number of elements. In particular, the
combination of solar cells is important because it inhibits
miniaturization. As we intend to apply EHAAS to a wearable
system, a smaller number of elements will be better for
implementation.

D. Result

First, in Table II, we show the result in the case that all the
EH elements are used as a sensor. We see that our system could
accurately recognize Lab with 95.9% of F-value and Outdoors
with a 91.0% F-value. However, the F-value of both corridors
on the 1st floor and 4th floor are a bit lower (71.8% and 61.4%)
than other places because the light condition in corridors in
the same building is similar. The average F-value for all of
the nine places is 88.3%, which we believe is high enough for
practical use, compared with the accuracy (90.2% in average)
achieved by BLE-based room-level localization [15]. We also
evaluated the place recognition accuracy of a conventional
system [25] where an illuminance sensor is used as a sensor, in
combination with an acceleration sensor for the recognition.
Table III shows the result for the conventional system that
utilizes an illuminance sensor (Photocell/Photodiode) for place
recognition. It was able to recognize the place “Lab” with
88.3% accuracy. However, the accuracy of other places is

TABLE IV
PLACE RECOGNITION ACCURACY OF THE CONVENTIONAL SYSTEM

(SENSOR: ACCELERATION AND ILLUMINANCE)

Precision Racall F-value Num. of data

Lab 0.911 0.869 0.889 7452

Seminar Room 0.63 0.656 0.643 1534

Cafeteria 0.451 0.531 0.488 1516

Corridor 4th 0.584 0.602 0.593 405

Toilet 0.632 0.514 0.567 560

Corridor 1st 0.55 0.648 0.595 421

Stairs 0.834 0.856 0.845 353

Outdoors 0.88 0.872 0.876 344

EV 0.597 0.667 0.63 189

avg / total 0.781 0.769 0.774 12774

TABLE V
AVERAGE F-VALUE OF EACH COMBINATION IN THE PROPOSED SYSTEM

Num. of EHs Combination Precision Recall F-value

All (6 types) 1,2,3,4,5,p 0.887 0.877 0.880

5 types
Best 2,3,4,5,p 0.89 0.883 0.885

Worst 1,2,3,4,p 0.883 0.867 0.872

4 types
Best 1,2,3,5 0.89 0.877 0.882

Worst 1,4,5,p 0.843 0.835 0.836

3 types
Best 3,4,5 0.883 0.875 0.878

Worst 2,4,p 0.785 0.785 0.784

2 types
Best 1,2 0.874 0.855 0.862

Worst 2,p 0.745 0.763 0.751

1 type
Best 3 0.763 0.768 0.762

Worst p 0.644 0.686 0.655

*p: piezo element, Numerical number : type of solar cell. 1 means SC1.

low. Overall, the average F-value for all of the nine places
is 70.1%. Table IV shows the result of the system where
both an acceleration sensor and an illuminance sensor are
used for place recognition. The average F-value for all of the
nine places is 77.4%. Except for “Stairs”, where the place
recognition accuracy is lower than our proposed system. We
think that the information of the acceleration sensor worked
effectively for detecting Stairs. However, it did not work well
for recognizing other places.

Next, we compare the F-value for different combinations
of EH elements to investigate the deterioration of the F-
value when reducing the number of EH elements used. We
investigated the performance of all the combinations of six
EH elements, 63 patterns in total. Table V shows the results,
where we pick up only the best result and the worst result for
each number of EH elements used.

We see that the F-value is basically reduced when the num-
ber of elements is reduced. The best performance, 88.5%, was
achieved by the combination of five EH elements (SC2, SC3,
SC4, SC5, piezo). On the other hand, the worst performance,
65.5%, was achieved in the case where we used one piezo
element. However, if we add one more EH element, the F-
value rises to 86.2%, where SC1 and SC2 are used. The
performance difference against the best combination (which
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TABLE VI
PLACE RECOGNITION ACCURACY OF THE PROPOSED SYSTEM

(SENSOR: SC1 AND SC2)

Precision Recall F-value Num. of data

Lab 0.97 0.92 0.944 7899

Seminar Room 0.635 0.761 0.692 1767

Toilet 0.944 0.783 0.856 434

Stairs 0.685 0.814 0.744 350

EV 0.649 0.814 0.722 161

Corridor 1st 0.638 0.677 0.657 427

Corridor 4th 0.452 0.651 0.534 464

Outdoors 0.925 0.861 0.892 345

Cafeteria 0.894 0.726 0.801 945

avg / total 0.874 0.855 0.862 12792

requires 6 elements) is just 2.3%. This result is very convincing
because we observed that SC1 (Polycrystalline silicon) and
SC2 (Organic thin film) have different characteristics against
the illuminance and wavelength in the preliminary experiment
(see Fig. 2 and Fig. 4). From this result, we can say that
the combination of a couple of EH elements having different
characteristics have a high capability to be used as a sensor
for place recognition. Furthermore, this result indicates the
possibility of the miniaturization of devices for practical use
of this system.

Table VI shows the detailed result of place recognition
in the case where we used only SC1 and SC2 as a sensor.
Compared with Table II, we see that the recognition accuracy
of Corridor 1st and Corridor 4th are degraded. These places
are also hard to distinguish for other combination of EH
elements because of the similarity of the environment (light
condition). However, the place recognition accuracy for other
places are almost the same despite the number of EH elements
being reduced from six to two. Hence, we consider that the
most reasonable combination for wearables is SC1 and SC2.

Finally, we discuss the effect of the piezo element on the
place recognition performance. The result, 65.5% of average
F-value, was not good in this experiment. We expected that the
piezo element would help to improve the performance when
it was used with other EH elements. Although we did not
assume a no-light environment in this experiment, using a
piezo element as a sensor will be useful for environments with
no light where the solar cell does not generate electricity at
all.

VI. CONCLUSION

In this paper, we have proposed a novel place recognition
system for wearables called EHAAS (Energy Harvesters As
A Sensor), where multiple energy harvesting elements are
used as a sensor. First, we investigated various EH elements
to clarify the characteristics of those elements against the
environment. Second, we implemented a prototype wearable
device and proposed a place recognition algorithm. Finally, we
showed that our proposed EHAAS achieved 88.5% accuracy
with five EH elements and 86.2% with just two EH elements.

Furthermore, we confirmed that this system has better accuracy
than an existing system consisting of an illuminance sensor
and accelerometer, in place recognition in the daily life of in-
door workers. This means that we can implement an EHAAS-
based system on a smaller wearable such as a watch (Fig.
7).

In this paper, we did not use EH element as an energy
source. As a next step, we will design a circuit that uses EH
elements as both an energy source and a sensor. Also, we
will investigate other combinations of EH elements including
peltier elements and rectenna [9].
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