
HCFContext: Smartphone Context Inference via
Sequential History-based Collaborative Filtering

Vidyasagar Sadhu∗, Saman Zonouz∗, Vincent Sritapan†, and Dario Pompili∗
∗Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, USA

†Cyber Security Division, Department of Homeland Security Science & Technology Directorate, USA
∗{vidyasagar.sadhu, saman.zonouz, pompili}@rutgers.edu, †vincent.sritapan@hq.dhs.gov

Abstract—Mobile context determination is an important step
for many context-aware services such as location-based services,
enterprise policy enforcement, building/room occupancy detec-
tion for power/HVAC operation, etc. Especially in enterprise
scenarios where policies (e.g., attending a confidential meeting
only when the user is in “Location X”) are defined based on
mobile context, it is paramount to verify the accuracy of the
mobile context. To this end, two stochastic models based on
the theory of Hidden Markov Models (HMMs) to obtain mobile
context are proposed—personalized model (HPContext) and col-
laborative filtering model (HCFContext). The former predicts the
current context using sequential history of the user’s past context
observations; the latter enhances HPContext with collaborative
filtering features, which enables it to predict the current context
of the primary user based on the context observations of users
related to the primary user, e.g., same team colleagues in
company, gym friends, family members, etc. Each of the proposed
models can also be used to enhance/complement the context
obtained from sensors. Furthermore, since privacy is a concern in
collaborative filtering, a privacy-preserving method is proposed
to derive HCFContext model parameters based on the concepts
of homomorphic encryption. Finally, these models are thoroughly
validated on a real-life dataset.

Index Terms—Mobile context, collaborative filtering, privacy-
preserving, personalized model, sensors, location, prediction.

I. INTRODUCTION

Overview: Mobile device applications provide an increas-
ing number of features customized to match users’ needs.
These needs are very often inferred from specific features
such as the user location, activity (e.g., running, walking,
driving), surrounding people, interacting people, the current
app usage on the device, etc. These features collectively
define a specific user (mobile) context. Mobile applications are
increasingly making use of these contexts such as location-
based services (e.g., Foursquare, Google Now, Weather up-
dates, etc.), enhanced reality applications (Pokemon GO [1]),
continuous authentication, etc. However, to enable these ser-
vices, context inference is a much needed and important step.
Most of the existing work focuses on obtaining mobile context
instantaneously from sensors which could possibly be hacked,
noisy or insufficient and as such cannot be relied in certain
security applications. Hence we take a different approach to
that problem in this paper by modeling mobile context based
on past context data. There are many advantages of modeling
the user context by leveraging the sequential nature of context
information in a user’s history as it can be used to predict the
current or future contexts. The former can be used to validate
and/or enhance the possibly hacked/noisy/insufficient sensor
context, while the latter can provide some information ahead of
time to the benefit of the user [2]. For example, a user’s general
routine during weekdays could be to head first to Starbucks
near his home, then to his work and then to Gym and back to

� �

� �

� �

�����	

��	�

���������������

���� �����

��������

�����	� �

���������

�!�

Fig. 1. A user’s personal (left) and group/collaborative filtering (right)
behavior that can provide some clues about user’s context at any given time.

home as shown in Fig. 1(left). The learned model will capture
this behavior and can be used to validate the location of the
user obtained via GPS at 5:30 pm to be at Gym (current
context prediction) or display coupons related to Starbucks on
his phone in advance (future context prediction). The latter can
be leveraged by mobile personal assistant technologies such
as Apple Siri/Google Now to much benefit of the user.

Motivation: One of the context-aware services is the enter-
prise data access control as in [3], where policies are defined
for enterprise data access based on the phone’s context (e.g.,
connected Wi-Fi, Cell ID, time, etc.). For example, a policy
may be defined to allow the phone to be used to attend a
confidential meeting or open a confidential document only
when the phone’s context is found to be within a given location
and time. In these secure scenarios, it is not suggested to rely
solely on the context obtained from the phone’s sensors (e.g.,
GPS/WiFi and System clock to give location and time) because
they could be hacked unknowingly to the user. For example,
a virus might change the system clock to show different time
or spoof the GPS [4] to show different location. However it
is hard to hack a model (more so, a collaborative one) that
is learned over a long period of time. Hence our solution
can be used to validate the context directly obtained from
sensors at that instant. Secondly, it is possible that context
from sensors is noisy (due to malfunction) or does not contain
enough information. For example, in the case of a tablet or
old mobile phone, it may not be able to acquire (accurate)
GPS signal. As such it will be helpful if there is another
way of obtaining this information such that it complements
the context from sensors. Thirdly, as mentioned earlier, future
context prediction is useful in certain context-aware services
such as mobile personal assistant technologies (Google Now,
Apple Siri, etc.), which can help pre-fetch information/pre-
plan based on the predicted context.

Our Approach: In order to address the above issues, we
first propose a personalized model (HPContext) that predicts

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5386-9148-9/19/$31.00 ©2019 IEEE 252

the user’s context based on its past sequential history of
contexts. Obtaining context through two approaches—sensors
and personalized model—adds an extra layer of confidence to
the obtained context. However, the following situations are
possible: contexts obtained from both approaches are very
different, contexts from one of the approaches is not available
(e.g., GPS may not be available from phone sensors indoors,
etc.) or insufficient leading to uncertainty. In such situations,
assuming the user is closely connected to a group of people
(e.g., same team colleagues in the company as shown in
Fig. 1(right), gym friends, family members, etc.), it is possible
that the context of other members in that group of people
can provide additional information about his/her context. For
example, assume users A and D often go to lunch together
(learned via model). Now somehow if it is known that D is
going to “Restaurant1” tomorrow for lunch, it is most likely
that the context of user A tomorrow around 1 pm is “having
lunch with D at Restaurant1” without having to rely on A’s
phone sensors at that instant. Our paper explores this aspect of
context to provide a second layer of confidence to the context
(over and above the personalized model). For this purpose, we
propose to use such context obtained through collaborative
filtering of the contexts of users closely related to the primary
user (HCFContext). To the authors’ best knowledge, this is the
first work to explore collaborative filtering for mobile contexts
that can be used to validate and/or enhance the current context
obtained from sensors or predict the future context for mobile
personal assistant technologies. Additionally we present a
privacy-preserving method for parameter estimation (training)
of HCFContext, as users may not be willing to share their
private data with each other for the same.

Contributions: Our specific contributions are as follows.

• We propose a personalized (HPContext) and collaborative
filtering (HCFContext) model to predict the users context
at any given instant (including future) based on the
sequential history of past contexts and based on the
theory of Hidden Markov Models (HMMs). We design a
novel emission model for these HMMs by considering the
unique features and the nitty-gritties of a mobile context
(e.g., GPS from sensors may not be always available).

• We present a homomorphic encryption based privacy-
preserving approach for training the HCFContext.

• We validate the efficacy of the proposed models by testing
them on a real-life data set belonging to five graduate
students collected over two months. We also evaluate our
privacy-preserving approach to study its trade-offs.

Paper Outline: In Sect. II, we present the related work
and position our paper. In Sect. III, we discuss the proposed
models, (HPContext, HCFContext) and the privacy-preserving
approach for the parameter estimation of HCFContext. In
Sect. IV, we present the results of our proposed approaches.
Finally, in Sect. V, we conclude and discuss future directions.

II. RELATED WORK

In this section, we position our work with respect to
previous works (i) that obtain context with and without users
sequential history, (ii) via local collaborative sensing, and (iii)
related to privacy-preserving collaborative filtering.

Without Sequential History: There is existing work on
modeling mobile contexts without considering the sequential
nature of context information. For example, Bao et al. [5] pro-
pose an unsupervised approach to model mobile context from

raw contextual data using Latent Dirichlet Allocation (LDA).
Srinivasan et al. [6] mine the co-occurrences of certain context
attributes; frequently and simultaneously occurring context
attributes are formulated as association rules to predict what
else the user will do (e.g., read comics) given a current
context attribute (e.g., listen to jazz). However, unlike ours
these approaches do not exploit temporal dependencies among
contexts but only consider the behavior at a given instant.

With Sequential History: There is also work that ex-
ploits the sequential/temporal dependencies between contexts.
For example, Mukherji et al. [7] present Mobile Sequence
Miner (MSM) framework that mines frequent sequences oc-
curring in app usage patterns, location visits, and call logs
using a frequency-based approach. Farrahi et al. [8] present a
probabilistic approach to mine mobile phone data (e.g., loca-
tion) sequences using Distant N-Gram Topic Model (DNTM)
where they model the sequence to be dependent on the starting
element of the sequence. There are works that model the user
activity using HMM based on sensor measurements [9], [10].
Even though these approaches exploit the sequential nature
of contextual information, they neither consider collaborative
filtering nor privacy-preserving aspects like we do. We claim
that collaborative filtering context has additional context in-
formation than context obtained from personal history alone.

Local Collaborative Sensing: There are also works on
local collaborative sensing; however, these works do not
consider the sequential nature of past information into the
collaboration process [11]. For example, Mantyjarvi et al. [12]
present a collaborative sensing approach where a device, upon
noticing a change in its local context beyond a threshold value,
requests contexts from its surrounding devices so as to increase
the accuracy of its context vector. Miluzzo et al. [13] use
collaboration to increase the confidence of the sensed context
through consensus of contexts sensed at surrounding devices.
These approaches however do not consider past sequential
nature of context information into collaboration.

Privacy-preserving Collaborative Filtering: There is ex-
isting literature in the domain of privacy-preserving collabora-
tive filtering and HMM techniques, which can be broadly clas-
sified into two categories—data perturbation/randomization
to hide the original data albeit with accuracy loss and data
encryption with typically no accuracy loss albeit with higher
computational complexity. On the former, Polat et al. [14] and
Parameswaran et al. [15] present privacy-preserving collabo-
rative filtering techniques based on randomized perturbation
and data obfuscation respectively. On the latter, Guo et al. [16]
present a privacy-preserving Markov model for sequence clas-
sification using homomorphic and ElGamal cryptographic sys-
tems. More works in this category can be found in [17]–[19].
We present an approach, designed specifically for our scenario,
that extends the ideas in this category for privacy preserving
multi-party parameter estimation of our HCFContext model.

III. PROPOSED APPROACH

In this section, we describe HPContext and HCFContext
models (Sect. III-A) and a privacy-preserving approach for
parameter estimation of HCFContext (Sect. III-B).

A. Context from Collaborative Filtering (HCFContext)

Problem Formulation: We present here the proposed HCF-
Context model by designing a novel emission model of a
HMM taking into account the multi-user collaborative filtering

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

253

TABLE I
EXAMPLE CONTEXT OBSERVATIONS OF USER u FOR TIMES t = 1, ..., T .

Time (t) Context observation of user u at time t (Otu)

t1
WiFi: wifi1, CellID: cid1, LAC: lac1, Battery Level: high,
Battery Status: discharging, Day Period: morning, Day of
week: Monday, Holiday: No

t2
WiFi: wifi2, CellID: cid2, LAC: lac2, Battery Level: medium,
Battery Status: discharging, Day Period: noon, Day of week:
Monday, Holiday: No

...........

tT
WiFi: wifi1, CellID: cid1, LAC: lac1, Battery Level: low,
Battery Status: charging, Day Period: night, Day of week:
Sunday, Holiday: Yes

aspects, as well as the unique features of the mobile context
and its nitty-gritties such as feature unavailability. We first
start with notation—capital letters denote random variables,
whereas their small equivalents are their realizations. A vector
variable will be indicated in bold. We model context (Ct) as a
latent variable in the HMM. For a given user, the observation
corresponding to a context state at time t will be called context
observations (Ot). An example of a user’s context observations
from time t = 1...T is shown in Table I. Each observation,
Ot, consists of a set of contextual feature-value pairs. These
observations are obtained at regular time intervals (e.g., a
minute to four hours). It can be seen as an example from
the table that the context observation at t = t1 corresponds to
morning when the user is at home (battery is high, probably
because the user charges her phone the previous night). The
observation at t = t2, say after 4 hours, can be interpreted
as being at office or workplace (change of WiFi, Cell ID,
etc.) with battery level being in medium range. Finally, the
observation at t = tT (after several days) can be taken to
be again at home in the night. We assume that K number
of latent context states spans across these T observations.
Considering users u = 1, ...,M , each user has a similar set
of T observations. Plate notation [20] for our HCFContext
model for M users is shown in Fig. 2. In plate notation,
the number of different categorical values a random variable
can take is shown inside the circle or rectangle. A circle is
used for a random variable while a rectangle is generally
used for hyperparameters. Observable variables are shaded.
The number of repetitions of a rectangular block is shown at
its bottom right corner. For a given user u, the observation
at time t, Otu is a set of feature-value pairs (as in a row of

Table I). We can write Otu = (ftu,vtu) = (ft,u,i, vt,u,i)
|ftu|
i=1

,
where |ftu| is the number of available features of user u, at
time t. Generation of each variable in Fig. 2 is described next.

Initial State Model: A prior distribution of contexts, π is
generated from prior Dirichlet distribution, η. C1 is then
generated from π. We will assume a total of K possible
context states for HCFContext over all M users.
Transition Model: A prior transition distribution of contexts,
ρct−1

= ρk, is generated from a prior Dirichlet distribution,
ωk. Ct is then generated from ρct−1

for a given Ct−1. Note
that ρk and ωk can take a total of K categorical values (Ct,
current state) for each k (Ct−1, previous state).
Novel Emission Model: For Ot generation under each Ct,
since features are not always available (e.g., GPS is not
available when indoor or underground, etc.), we will define
a separate distribution for features (Ft) to account for their
availability and then another distribution to obtain the values
(Vt) for those features at time t, as illustrated in Fig. 2. Ft is
dependent on Ct, whereas Vt is dependent on both Ct and Ft.

�
� �

�

� �

�

��
�

�
�

�

��

�

CtC1 CT

Vt Ft θkf

δkf

ϕkf

λkf

ρk
ωkπη

��
�
�

�

���

������

���

��

Fig. 2. Plate notation of HCFContext. F is the total number of features, VF
denotes the total number of possible values for feature F , |Ft| = |Vt| denotes
the number of features observed at time t, M is the number of users, and K
is the number of hidden context states.

An initial feature distribution, θct,ft = θk,f , is generated from
a prior Dirichlet distribution, δk,f . Feature Ft is then generated
from θk,f , which can take two categorical values—whether
the feature is present or not for the given context, ck. We will
assume a total of F possible features over all observations of
all users. A prior value distribution, φct,ft = φk,f , is generated
from a prior Dirichlet distribution, λk,f . Value Vt is then
generated from φct,ft for a given context ct and feature ft,i.
For a given feature f , we will assume V can take Vf possible
values. The priors will be chosen such that the summation and
non-negativity constraints on the parameters are satisfied and
also to encode prior information. For example, if it is known
that a user frequently moves between home to work, the prior
parameter for this transition, (ωk), is given a high value.
Parameter Estimation (Training): Given these parameters,
Ψ = {Π, P,Θ,Φ}, the parameter space of π, ρk, θk, φk,f and
their hyperparameters, {η, ω, δ, λ}, let us denote the joint prob-
ability of all latent contexts C = {C1, ...CT } and all context
observations, O = {O1, ...OT }, as P (C,O | Ψ, η, ω, δ, λ).
Likelihood of the observations O is then,

L(O) =
∑

c

P (C,O | Ψ, η, ω, δ, λ). (1)

Training the HMM involves finding the parameters Ψ that
maximize the likelihood in (1). Given the complex nature
of (1) expanded, it is very difficult to derive a closed-form
solution of Ψ. Hence, we make use of the well-known iterative
approach called Expectation Maximization (EM) [21] but
modify it to fit our approach. It consists of two important
relations viz., forward and backward relations. We can express
the full observation probability p(ot | ctk) = µtk:

µtk = p(ot | ctk) =
M
∏

u=1

µtku
=

M
∏

u=1

∏

f∈ftu
v∈vtu

θk,f φk,f,v. (2)

Forward relation can now be expressed as,

α(c1k) = πkµ1k (for t = 1), (3)

α(ctk) = µtk

K
∑

j=1

α(ct−1,j)ρjk (for t = 2 to T). (4)

Similarly, we can express the backward relation as follows,

β(ctk) =
K
∑

j=1

β(ct+1,j)µt+1,jρkj . (5)

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

254

Using these relations, we can define two new variables,
ξ(Ct−1, Ct) and γ(Ct), for ease of analysis (denote γ(Ct =
ctk) = γ(ctk) and similarly for ξ(ct−1,j , ctk)) as follows,

ξ(ct−1,j ,tk) =
α(ct−1,j)µtkρjkβ(ctk)

∑K

k=1
α(cTk)

, (6)

γ(ctk) =
K
∑

j=1

ξ(ct−1,j , ctk). (7)

We can now compute the model parameters as,

πk =
γ(c1k) + ηk

∑K

k′=1
(γ(c1k′) + η′k)

, (8)

ρkj =

∑T

t=2
ξ(ct−1,k, ctj) + ωkj

∑K

j′=1

∑T

t=2
ξ(ct−1,k, ctj′) +

∑K

j′=1
ωkj′

, (9)

θk,f =

∑T

t=1
γ(ctk)

∑M

u=1
I(f ∈ ftu) + δk,f

M
∑T

t=1
γ(ctk) +

∑F

f ′=1
δk,f ′

, (10)

φk,f,v =

∑M

u=1

∑

t:f∈ftu
γ(ctk)I(vt,f,u = v) + λk,f,v

∑M

u=1

∑

t:f∈ftu
γ(ctk) +

∑Vf

v′=1
λk,f,v′

, (11)

where I(x) is the indicator function with I(x) = 1 if x is
true and 0 otherwise. Eqs. (3)-(7) constitute the E-step, while
Eqs. (8)-(11) constitute the M-step of the EM algorithm. These
steps are iterated until the parameters in M-step converge.
Prediction: We will now use the learned parameters to predict
the future observations given past observations. This will be
done by first finding the distribution over future states and then
by multiplying the distribution over the observations given the
future state. In our case, since the observations are feature-
value pairs, we will first calculate the distribution over features
and then the distribution over values given features. Given
that the user has made a sequence of past ‘t’ observations,
o1:t = {o1, ...,ot}, the probability that a feature f , and then
a value v for that feature, will be observed at time t+ 1 can
be computed, respectively, as follows,

p(f ∈ ft+1 | o1:t) =
K
∑

k=1

p(ct+1,k | o1:t) · θk,f , (12)

p(vt+1,f = v | o1:t) =

K
∑

k=1

p(ct+1,k | o1:t) · φk,f,v, (13)

Note that p(ct+1,k | o1:t) in (12), (13) is computed as,

p(ctk | o1:t) =
K
∑

j=1

p(ct+1,k | ctj)p(ctj | o1:t), (14)

where p(ct+1,k | ctj) = ρjk and p(ctj | o1:t) can be
recursively computed using a procedure similar to (4),

α′(ctk) = p(ctk | o1:t) =
µtk

∑K

j=1
ρjkα

′(ct−1,j)
∑K

k=1
µtk

∑K

j=1
ρjkα′(ct−1,j)

We compute (12), (13) over all features, fi : i = {1, ..., F},
all corresponding values vj : j = {1, ..., Vfi} and pick the
most probable ones to get the feature-value pairs at t+ 1.
Determining the Number of Hidden Contexts: So far we
have assumed that the number of hidden contexts K is given;

however, in general this number needs to be determined
automatically from the data. We will now detail an original
approach to determine the best K assuming it lies in the
range Krange = [Kmin,Kmax] and that the extremes can be
approximately obtained from prior information about the data.
To determine the best K ∈ Krange, we will define a metric
called Perplexity that determines how well the chosen K fits
for prediction tasks over the testing set. Finding perplexity
involves calculating the prediction probability over a sequence
of observations given a sequence of past observations from the
testing set. Perplexity can be defined as follows,

Perplexity = exp

(

−
log p(ot+1:T | o1:t)
∑M

u=1

∑T

t=t+1
|otu|

)

, (15)

where |otu| is the number of features observed at time t for
user u and p(ot+1:T | o1:t) can be determined as follows,

p(ot+1:T | o1:t) =
K
∑

k=1

p(ctk | o1:t)p(ot+1:T | ctk), (16)

where p(ctk | o1:t) = α′(ctk) and p(ot+1:T | ctk) = β(ctk).
Intuitively, a small perplexity is desired. Although in general
the perplexity reduces as K increases, a large K is not
preferred due to the risk of overfitting. Hence, we make use
of the rate of decrease in perplexity to determine when to stop
increasing K, e.g., if it falls below a threshold (say 10%).
HPContext Model: Personalized model is just a special case
of the above collaborative filtering model when the number
of users is one (i.e., M = 1). The main difference is in the
observation probability. Specifically, for user u,

µtk = p(otu | ctk) = µtku
=

∏

f∈ftu
v∈vtu

θk,f φk,f,v. (17)

Remaining equations remain the same with setting M = 1.

B. Privacy-preserving Multi-party Computing

Since the users could possibly be in different contexts
while training it is important to preserve their privacy. In
this section, we develop algorithms for multi-party parameter
estimation of HCFContext (Sect. III-A) while preserving each
party’s privacy. Hence model parameters need to be jointly
estimated when the individual observations are encrypted.
Since the model parameters Ψ are known to everyone, the
prediction can be carried out by each party on their own. The
algorithms we developed for this (extended from [19]) are
based on the following well-known primitives—homomorphic
encryption [22], secure logsum, and secure negation [23].

The proposed algorithm for secure multi-party computation
of data likelihood, P (O | Ψ) is shown in self-explanatory
Algorithm 1. It details the steps the M parties need to
undertake to jointly compute α(·) (as per (3), (4)) and the log
likelihood of their observation data given the model parame-
ters, P (O | Ψ). We assume only one party (P1 in Algo. 1) has
both the private and public keys, while the remaining M − 1
parties (Pm | m = 2, . . . ,M) have only the public key. Hence
all parties encrypt their private observation data and send it
to Pm, where m can be any one of 2, . . . ,M , which does
the computations on this private encrypted data (as it cannot
decrypt it since it has only public key). Whenever it needs
to compute secure logsum and secure negation protocols, it
consults P1 which has the private key. Algo. 1 can be similarly

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

255

Algorithm 1 Secure Multi-party Computation of P (O | Ψ).

Input: Parties P1, P2, . . . , PM know the model Ψ. Each party has a set of
private observations Otu=(f1u,v1u), (f2u,v2u), . . . , (fTu,vTu).

Output: P (O | Ψ, η, ω, δ, λ) =
∑K

k=1
α(cTk)

Initialization (t=1):
1: for k = 1, . . . ,K do
2: for all Pq 6=m do
3: Pq sends E[log(µ1kx

)] to Pm,
4: end for
5: Pm computes E[log(

∏M
u=1

µ1ku
)] using (2)

6: Pm computes E[log(α(c1k))] using (3)
7: end for

Induction:
8: for t = 2, . . . , T do
9: Repeat steps 2-6, replacing time index with t, so that Pm obtains

E[log(
∏M

u=1
µtju)] for j = 1, . . . ,K.

10: for k = 1, . . . ,K do
11: Pm and P1 use the secure logsum protocol to compute

E[log
∑K

j=1
α(ct−1,j)ρjk],

12: Pm computes E[log(α(ctk))] using (4)
13: end for
14: end for

Termination:
15: Pm and P1 use the secure logsum protocol to compute E[logP (O |

Ψ)] = E[log
∑K

k=1
α(cTk)],

16: P1 decrypts the result and sends the value to Pm.

Algorithm 2 Secure Multi-party Estimation of Ψ.

Input: E[logα(ct)], E[log β(ct)], and E[logP (O | Ψ)].
Output: The updated model parameters Ψ = {Π, P,Θ,Φ}
1: for t = 2, . . . , T do
2: for k = 1, . . . ,K do
3: for j = 1, . . . ,K do
4: Pm computes E[log ξ(ct−1,j , ctk)] by taking the log of (6)
5: end for
6: Pm and P1 use the secure logsum to compute E[log γ(ctk)]

from (7)
7: end for
8: end for
9: Pm uses (8), (9) to update E[log πk], E[log ρkj].

10: Pm then updates E[log θk,f] and E[log φk,f,v] as in (10) and (11), for
the M parties using the secure logsum and negation protocols.

used to compute β(·) as per (5). The proposed algorithm
for secure multi-party estimation of model parameters, Ψ is
shown in Algo. 2. It details the steps taken by the M parties
to estimate Ψ using P (O | Ψ), α(·), β(·) computed from
Algo. 1. In Algo. 2, Pm first computes ξ(ct−1,j , ctk), γ(ctk)
as per (6) and (7) respectively. It then computes the model
parameters, Ψ as per eqs. (8) to (11). The computational
complexity of Algo. 1 can be seen as O(MK2T) due to twice-
nested for-loop operating for T timesteps for each party, while
it is O(MK3T) for Algo. 2 due to triple-nested for-loop.
Threat/Adversary Model: We use a semi-honest setting,
where parties keep all their intermediate computations pri-
vate, and we assume that Pm will not collude with P1 and
disclose encrypted values received. The key generation in our
security model will be following a standard key exchange
mechanism [24] without the need to a third party entity. One
may argue that the models themselves may be unreliable
as they are based on historical sensor data. Our approach
provides protection against this point by comparing sensor
context with that obtained from HPContext and HCFContext,
and alerting the user in case of significant differences and
adaptively learning to ignore false positives.
Floating Point and Negative Numbers: Our algorithms need
to encrypt the HMM parameters, which are real numbers.
We translate between floating-point numbers and non-negative
integers by scaling and rounding off the values. Let c be
the scaling factor. A real number r is translated to integer

TABLE II
LIFEMAP DATASET ANALYSIS (9 WEEKS, 5 USERS, 1 HR SAMPLING).

Feature Values VF

WiFi MAC values of max dBm Access Points 440
Place Name User defined place name values 168
Cell ID Cell ID values 316
LAC Location Area Code values 33
Batt. Level Low (< 35%), Medium (35%−65%), High

(65%− 85%), Full (> 85%)
4

Batt. Status Charging, Discharging, Full 4
Day Period Morning: {7 to 11 am}; Noon: {11 am to

2 pm}; Afternoon: {2 to 6 pm}; Evening:
{6 to 9 pm}; Night: {9 pm to 7 am}

5

Day Name Mon, Tue, Wed, Thu, Fri, Sat, Sun 7
Holiday Yes, No 2

r̄ = ⌊cr⌋, where ⌊x⌋ is the largest integer ≤ x. We incor-
porate this operation into the encryption and decryption as
E′[r] = E[r̄] = E[⌊cr⌋], and D′[E′[r]] = r̄/c ≈ r. For
negative numbers, we use modulo n arithmetic, i.e., negative
numbers are represented by their modular additive inverse. For
r < 0, E′[r̄] = E′[r̄+n]. This means our r is limited to range
[−n/(2c), (n− 1)/(2c)].

IV. EXPERIMENTAL EVALUATION

We describe the experimental setup and results, and evaluate
the performance of the privacy-preserving algorithms.

Dataset and Experiment Description: To validate our mod-
els, we have used the LifeMap dataset [25], which is freely
available online. This dataset consists of fine-grained mobility
data such as WiFi fingerprints (MAC address and signal
strengths of surrounding Wi-Fi APs), user-defined types of
places (workplace, cafeteria, etc.), cell tower ID, etc. These
details of 10 users are logged every 2 to 5 minutes for about
two months (which is the overlap time among all users) in
Seoul, Korea. The users are graduate students of the same lab
in the university and as such the data suits our application.
We have chosen data corresponding to five users for a period
of nine weeks for our experiments. Username, gender and the
number of places visited in total for these five users are as
follows—GS2 (A), M, 163; GS3 (B), M, 297; GS4 (C), F, 209;
GS7 (D), M, 289; GS12 (E), M, 376. The average number of
places visited per user is about 270. However, the number of
frequently visited places for each user ranges from 8 to 35
(median 20). We also down sampled the data to 1 hour period
to ease the computations i.e., the time instants t and t+1 are
separated by 1 hour. This also means the trained models will be
able to capture mostly only those contexts with stay duration
of the order of an hour or more. Six weeks of data is used for
training and the rest three week data is used for testing. The list
of features we have used from this dataset is shown in Table II.
Here VF corresponds to the total number of values taken by
that feature. In case of ‘Holiday’, Saturday, Sunday and any
public holidays are considered as holidays. In cases where a
certain feature’s value is missing, we model it as if the feature
is not available at that time using θk,f . We have empirically set
η = {1/K, ..1/K}, ωk = {50/K, ...50/K}, δ = {1, 10}, λ =
{0.01, ...0.01} in our experiments [26] (K is the number of
hidden context states). All our results (implemented in Python)
are generated on an Intel 4-core i7-2600 CPU @ 3.40GHz,
with 8 GB of RAM. We did not consider a larger dataset as
our main idea is to apply collaborative filtering across the
user’s closely related users such as labmates, roommates, etc.
Also, we could not find larger datasets with similar features.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

256

0 10 20 30 40 50 60 70

Number of hidden context states (K)

4

6

8

10

12

14

16

18

20

22

A
ve

ra
g

e
 P

e
rp

le
xi

ty

User A

User B

User C

User D

User E

(a)

0 10 20 30 40 50 60

Number of hidden context states (K)

5

10

15

20

25

30

A
ve

ra
g

e
 P

e
rp

le
xi

ty

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

Group 10

(b)

0 10 20 30 40 50 60

Number of hidden context states (K)

6

8

10

12

14

16

18

20

22

24

26

A
ve

ra
g

e
 P

e
rp

le
xi

ty

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

Group 10

(c)

Fig. 3. Perplexity vs. K (a) 1 user case, (b) 2 user case, (c) 3 user case. These figures help identify the best 2 or 3 user groups (most related users).

0 10 20 30 40 50 60

Number of hidden context states (K)

8

10

12

14

16

18

20

22

A
ve

ra
g

e
 P

e
rp

le
xi

ty

Group 1

Group 2

Group 3

Group 4

Group 5

All Users

(a)

0 2 4 6 8 10 12
Iteration Number of EM Algorithm

−90000

−80000

−70000

−60000

−50000

−40000

−30000

−20000

−10000

0
L

o
g

L
ik

e
li

h
o
o
d

,
P
(O

|Ψ
)

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
ta

k
e
n

(s
e
c
)

HPContext

HCFContext(2 Users)

HCFContext(3 Users)

(b)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

40

50

60

70

80

90

P
e
rc

e
n

ta
g
e

o
f

co
rr

e
ct

p
re

d
ic

ti
o
n

s
o
v
e
r

a
ll

fe
a

tu
re

s

1-3 week Test

4-6 week Test

7-9 week Test

(c)

Fig. 4. (a) Perplexity vs. K (4 and all user case). (b) Log likelihood of the training data and time taken vs. number of iterations of EM algorithm for different
models. (c) Comparison of performance (HPContext + HCFContext (2) + HCFContext (3)) for different choices of test data - first, mid, and last 3 weeks.

Perplexity vs. K and Optimal Group Selection: Figure 3a
shows the averaged perplexity values for different number of
hidden states, K, for one user case. Since this is a one user
case it corresponds to HPContext. The perplexity is calculated
by predicting the observations at the next 12 time instants in
the test data given the preceding 12 observations on the same
day. This has been done over all the days in the three week
test data and the results are averaged. From Fig. 3a, we can
observe that perplexity reduces as K increases with a pattern
of diminishing returns. We can observe that user A has the
best perplexity and K = 10 provides a good balance between
perplexity and complexity introduced due to higher K values.
Figure 3b shows similar result for 2 users. Since we have 2
users, we have a total of 10-user groups (5C2 combinations).
We can observe that Group 10 consisting of users A,C has
the best perplexity and K = 15 provides a good tradeoff.
This means that the two users in Group 10 have more similar
patterns than the users in other groups. Figure 3c shows similar
result for 3 users. We can observe that Group 2 (users A,C,D)
has the best perplexity with K = 25 providing good tradeoff.
Similarly, for 4 user case, we can observe from Fig. 4a, that
Group 1 (users A,B,C,D) has best perplexity values and
K = 25 provides a good balance. For all user case in the
same figure, we can see that K = 25 provides a good tradeoff.
Hence these results can be used to select most related users
in a group of 2/3/4, etc. Even though it takes time to find the
optimal group via this approach, we feel it is acceptable as
it is done only once offline. For the results below, whenever a
user or a group of users is mentioned, we considered the above
best groups and optimal K values. To illustrate the benefits
of collaborative filtering contexts, we considered only 2 and 3

user groups as benefits diminish with increase in group size.

Log Likelihood Convergence, Training Times: Figure 4b
shows the log likelihood (LL) of the training data, P (O | Ψ),
versus the iteration number in the EM algorithm (which is
used to estimate parameters of HCFContext) for different
models. We have considered six weeks of training data so,
T = 6× 7× 24. We can see that the LLs have converged and
the model significantly improves the initial LL values (upto
30%). We can notice that LLs have approximately converged
after ncon = 3 iterations. Even then, the converged LLs have
lower values due to large number of values for certain features
(such as WiFi APs which has about 440 unique values) which
makes the value probabilities, φk,f,v , very small. In fact,
we encountered underflow problem due to multiplication of
several small probabilities and then using such a value in the
denominator resulting in nan values. In order to solve this
problem, we have used scaling approach [27] for α, β values.
Figure 4b also shows the time taken in seconds vs. iterations
of EM algorithm. The corresponding time for ncon = 3
is about 200, 800, 1500 seconds respectively for the three
models. These durations are reasonable considering that the
training is run offline and very less often. Both these results
are averaged over 4 runs and we can notice that the 95%
confidence intervals are too minute to be noticed.

Prediction Performance—A Use Case: We relate to the
“lunch” use case mentioned in Sect. I. We considered user
A for this purpose and his most related 2 and 3 user
groups as found from above—(A,C) and (A,C,D)—and
the corresponding models, HPContext, HCFContext (2), and
HCFContext (3), respectively (please note this notation to be
used in rest of the paper). We first illustrate the prediction

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

257

TABLE III
USE CASE ILLUSTRATING THE PREDICTIONS (WITH CORRESPONDING MAX. PROBABILITIES) AT 1 PM ON ONE TUESDAY IN THE TEST PERIOD.

Features Ground
Truth(A)

HPC(A) HCFC(A,C) HCFC(A,C,D) HPC(A) + HCFC(A,C) HPC(A) + HCFC(A,C)
+ HCFC(A,C,D)

Wi-Fi AP 00:bl:f2:9b:05:76 00:og:1f:2e:4n:6c(0.32) 00:bl:f2:9b:05:76(0.43) 00:bl:f2:9b:05:76(0.41) 00:bl:f2:9b:05:76(0.27) 00:bl:f2:9b:05:76(0.32)
Place Name F007 F007 (0.84) B003 (0.48) J023 (0.31) F007 (0.57) F007 (0.41)
Cell ID 42534164 42534164 (0.62) 42534164 (0.44) 48759836 (0.3) 42534164 (0.53) 42534164 (0.39)
LAC 8513 9353 (0.32) 8513 (0.47) 8513 (0.57) 9353 (0.36) 8513 (0.41)
Battery
Level

High High (0.89) Medium (0.41) Medium (0.32) High (0.57) High (0.42)

Battery Sta-
tus

Discharging Discharging (0.95) Discharging (0.93) Discharging (0.81) Discharging (0.94) Discharging (0.89)

Day Period Afternoon Afternoon (0.72) Afternoon (0.82) Afternoon (0.73) Afternoon (0.77) Afternoon (0.75)
Day Name Tuesday Tuesday (0.59) Tuesday (0.68) Tuesday (0.73) Tuesday (0.63) Tuesday (0.67)
Holiday No Yes (0.6) No (0.7) No (0.75) No (0.55) No (0.62)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

WiFi-AP

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(a)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Cell-ID

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(b)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

LAC

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(c)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Place-Name

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(d)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Battery-Level

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(e)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

A
ve

ra
g

e
A

c
c
u

ra
c
y

(o
ve

r
a

ll
te

s
t

d
a
y
s
)

Holiday

MobileMiner

HPC

HPC+HCFC(2)

HPC+HCFC(2)+HCFC(3)

(f)

Fig. 5. Average accuracy of the proposed models—HPContext, HPContext + HCFContext (2), HPContext + HCFContext (2) + HCFContext (3) in predicting
the respective features at different times in a day (averaged over all 21 test days/4 runs). We can notice a slight drop in accuracy during mid-day (good at
other times) owing to a degree of randomness in users motion patterns at those times (still ≈ 75% sufficient for context validation/enhancement).

results using a known use case as follows. We manually
observed from the data that users A,C,D usually go to
lunch together on weekdays around 12 − 2 pm. We wanted
to check whether our models are able to capture this group
behavior. Hence we predicted the contextual feature-values of
user A at 1 pm on one randomly selected weekday (Tuesday)
in the test period given the observations of previous one-
day duration using the above models. Table III shows the
results of different models along with ground truth (column
2). All entries correspond to maximum probability values with
those probabilities shown in brackets. Incorrect predictions are
depicted in bold. We can notice that HPContext (col. 3) does
a good job in predicting the personalized features such as
Place Name, Battery Level but makes 3 incorrect predictions
for more general features such as LAC, Holiday, etc. Note
that each feature is predicted independently, e.g., predicting
Place Name correctly does not necessarily mean Wi-Fi AP
prediction is correct. Interestingly, HCFContext (cols. 4,5)
makes correct predictions for those general features but fares
badly for personalized features. Hence we combined the two

models to obtain better predictions (as can be seen in last two
columns) as follows. In case of HPContext + HCFContext (2),
we first average the probabilities of values predicted by both
models and then take the feature value with the highest average
probability; similarly for HPC + HCFC(2) + HCFC(3) (HPC
refers to HPContext and HCFC to HCFContext for simplicity).

Prediction Performance—Overall: To evaluate the overall
performance, we predicted all the contextual feature value
pairs of user A at 3 hour increments in the entire 3-week
testing period (i.e., 3×7×8 in total) given the past observations
of one-day duration. In order to compare with other closest
approaches, we considered Mobile Miner [6], which is the
current state-of-the-art machine learning algorithm to mine
contextual co-occurrences. Each feature is considered to be
independently co-occurring with the time of day and day of
week (as opposed to sequentially occurring in our case), and
is modeled using Multinomial Logistic Regression. Figure 5
shows the average prediction accuracy (percentage of correct
predictions) for each feature at different times in a day (aver-
aged over all the 21 days). Even though we are able to predict

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

258

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100
P

e
rc

e
n

ta
g
e

o
f

E
x

c
e
ll

e
n

t
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(a)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

G
o

o
d

p
re

d
ic

ti
o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(b)

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

B
a

d
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(c)

Sun Mon Tue Wed Thu Fri Sat

Day of Week

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

E
x

c
e
ll

e
n

t
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(d)

Sun Mon Tue Wed Thu Fri Sat

Day of Week

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

G
o

o
d

p
re

d
ic

ti
o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(e)

Sun Mon Tue Wed Thu Fri Sat

Day of Week

0

20

40

60

80

100

P
e
rc

e
n

ta
g
e

o
f

B
a

d
p

re
d

ic
ti

o
n

s

HPC

HPC + HCFC(2)

HPC + HCFC(2) + HCFC(3)

(f)

Fig. 6. Percentage of excellent/good/bad predictions—(a)-(c) at different times of day; (d)-(f) for different days of week.

at the hourly level (due to the upsampling mentioned earlier),
we show only at 3-hour intervals for clarity. These simulations
are also run for 4 runs (to account for randomicities such
as random initialization of the model parameters) and the
confidence intervals are shown. Due to space limitations, we
have shown results only for six features consisting of four
location features—Wi-Fi AP, Place Name, Cell ID, Location
Area Code (LAC), one device feature—Battery Level and one
time feature—Holiday. Others follow similar pattern.

First of all we can notice that the proposed models perform
better than Mobile Miner. Second, in case of proposed models,
we can notice that the accuracy slightly drops during mid-
day compared to other times. The reasons for this drop as
follows—(1) the user is more mobile during those times
introducing randomness into the data making the model hard
to learn; (2) the average number of places visited by each
user is 270 (as indicated above) and the K value chosen (as
a tradeoff between complexity and accuracy) is less than that;
(3) the data is down-sampled to one hour interval, meaning,
any places with stay duration less than one hour will not
be captured well. However it is important to note that the
accuracy in such cases is still on an average about 75% which
is reasonable to validate/complement the context from sensors.
During other times of the day, we can notice that the accuracy
is about 90%, which means the models are able to predict the
values of those contextual features correctly 90% of the time.
Third, we can notice that HPC + HCFC(2) model improves
accuracy over HPC to a maximum of 15% especially in more
general features such as LAC, Holiday. In case of personalized
features such as Place Name, Battery Level, the improvement
is minor. We also notice that the additional improvement from
HCFC(3) is again minor, about 5%. In total, HCFC contributes
upto 20% improvement in accuracy. We have also plotted
similar results for each day of the week but could not include

them due to space limitations. In addition to above trends in
generic/personalized features vs. models, we have noticed a
drop in accuracy over weekends (to ≈ 75% on average) again
owing to increased mobility with less sequential behavior. The
average accuracy is about 80% to 90% for the rest of the days
(HPC + HCFC(2) + HCFC(3) model).
Prediction Quality: Next, we tested our models’ prediction
quality by testing how many of the features (all in Table II)
the models are able to predict correctly at a given time of
day. For this purpose, we created three categories—Excellent,
Good, Bad. If the model is able to predict at least 7 features
out of 9 correctly at a given instant, we call it Excellent
prediction. Similarly we call 4/5/6 features prediction, a Good
prediction and 1/2/3 (0 is not included) features prediction, a
Bad prediction. For example, the prediction corresponding to
HPC(A) in Table III is considered a Good prediction, while
that belonging to HPC(A)+HCFC(A,C), an Excellent pre-
diction. Figure 6 shows these results (averaged) for different
times of day and days of week. In both sets of figures, we can
notice that the percentage of Excellent cases is at least 50%.
Secondly, the percentage of Excellent cases is more than Good
cases which in turn is more than the Bad cases (in particular
the Bad cases are very less comparatively).
Test Data Rotation: The performance of the models when the
test data chosen is the first (1-3), middle (4-6) and last (7-9)
three weeks is shown in Fig. 4c, which shows the percentage
of correct predictions across all features and test days for
different choices of test data (results shown only for HPC
+ HCFC(2) + HCFC(3) for clarity). We can notice that the
performance is roughly the same showing robustness of the
proposed models to choice of test data and their ability to
fully learn users’ sequential patterns using 6 weeks train data.
Contextual Optimal User Group Selection: So far, for a
given user, A, we have found the optimal user groups consid-
ering all times of the day. However, it is more beneficial to find

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

259

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Time of Day

0

20

40

60

80

100
A

v
e

ra
g

e
A

c
c
u

ra
c
y

(o
v
e

r
a

ll
fe

a
tu

re
s
,

te
s
t

d
a
y
s
)

HPC(A)

HCFC(A,C)

HCFC(A,dynamic)

(a) (b)

100 200 300 400 500 600 700 800 900

Number of time samples (T)

0

500

1000

1500

2000

2500

3000

T
im

e
ta

k
e
n

(s
e
c
)

64 bits

128 bits

256 bits

(c)

Fig. 7. (a) Comparison of performance among HPContext, HCFContext (with fixed optimal user group), HCFContext (with dynamic optimal user group).
(b) Worst-case errors of parameters [10 runs] (%). (c) Time taken to run Algorithm 1 for different number of training (time) samples vs. key length (bits).

the optimal user group based on the time of the day as is the
real scenario. For example, for a given user, the closely related
users during the office hours may be different from the closely
related users during home hours. Taking this idea into account,
we have found the most closely related user for user A (i.e.,
optimal 2-user group) at different times of the day using
the perplexity method mentioned earlier. Instead of averaging
across all times of the day, we find the user group with
minimum average perplexity at each time instant of the day.
The results are as follows—(12am,B), (3am,B), (6am,B),
(9am,C), (12pm,C), (3pm,C), (6pm,C), (9pm,D).

Prediction Using Only HCFContext: We now predict the
feature-value pairs of user A at all time instants in the test
period using only the collaborative filtering model, HCFC(2),
with dynamic optimal 2-user group obtained from above.
Figure 7a shows the performance of that model compared
against two other models—the personalized model HPC and
HCFC(2) with fixed optimal 2-user group (A,C). We can
notice that dynamic HCFC performs close to HPC and better
than fixed HCFC. This indicates that personalized context
can be obtained from collaborative filtering of contexts cor-
responding to user’s closely related users with appropriate
dynamic (i.e., time of day/activity the user is performing)
selection of closely related users.

Privacy-preserving Algorithms: To evaluate the performance
of Algorithms 1, 2, we tested them on a simple HMM with
M = 2 parties, K = 2 hidden states and |ftu = 6| observation
states per hidden state. We evaluated both the amount of error
introduced (due to scaling as mentioned in Sect. III-B)) as well
as the time taken to train the HMM and run the predictions. For
the former, we calculated the error by comparing with the non-
privacy preserving case. We varied the key length (bits) n and
the scaling factor c. The worst-case errors over 10 runs with
T = 1000 samples, as percentages, for different parameters is
shown in Fig. 7b. We notice that the error reduces as scaling
factor increases (as expected). Similarly, as the key length
increases, the error reduces and also security increases. We
can notice that for large keys and reasonable scaling factors,
the error due to integer approximation and consequent over-
or underflow is insignificant (about 2% in the worst case over
all parameters). This shows that the effect on the prediction
accuracy results above will not be drastic. However, the price
is in terms of run-time. Figure. 7c shows the average run-times
of Algorithm 1 vs. the number of time samples as well as the
key length (with c = 106). We can see that the time taken
varies linearly with the number of samples used. However,

the relation seems to be approximately quadratic with key-
length. This result shows the tradeoff between security and
run-time. As the key-length is increased, more is the security,
less is the amount of error introduced, however the run-times
are more. Hence a suitable key length should be chosen that
is a compromise between security/error and run-time. The
run-times for Algorithm 2 are on average five times more.
However these algorithms need to be run only for training
the HCFContext which is run very less frequently and offline.
Moreover, we will leverage recent advances in encryption and
multi-party computation algorithms such as [28] to help further
reduce the runtimes of these algorithms, as part of future work.
Real-time Inference and Cold-start: Once the training is
complete, model parameters are known to each device. Pre-
diction, then, just involves evaluating (12), (13) by plugging
in the learned parameters. These are just a few arithmetic
operations and do not involve any compute-intensive en-
cryption/decryption algorithms unlike training which happens
offline. Hence, our approach will not have any problems
in practical implementations i.e., making predictions in real
time. Furthermore, to combat the cold-start problem akin
to collaborative filtering based approaches, we suggest to—
(i) use sensor context and also obtain user validation for
additional security; (ii) use sensor context + HPContext until
HCFContext is learnt well.
Energy Considerations: Note that all of the features we
worked with are passive, i.e., do not require active probing that
consumes energy. One exception is the Wi-Fi, which needs to
be turned ON in case it is not ON. In all other cases, we
piggyback on the sensor data already available on the phone,
reducing energy consumption.

V. CONCLUSION AND FUTURE WORK

We proposed and evaluated (on a real-life dataset with over
80% accuracy) privacy-preserving, sequential history-based
personalized and collaborative-filtering models, for current and
future mobile context prediction to validate and/or enhance
the sensor context. Their feasibility for practical deployment
in security applications and/or mobile personal assistant tech-
nologies is shown. As future work, we plan to conduct a pilot
study of our models; improve their training times leveraging
suboptimal algorithms and enhance their prediction accuracy.

ACKNOWLEDGMENT

We thank the US Department of Homeland Security Science
& Technology Directorate (DHS S&T) Cyber Security Divi-
sion for their support under the contract No. D15PC00159.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

260

REFERENCES

[1] Niantic, “Pokemon Go,” http://www.pokemongo.com, 2016.
[2] V. Pejovic and M. Musolesi, “Anticipatory Mobile Computing: A Survey

of the State of the Art and Research Challenges,” ACM Comput. Surv.,
vol. 47, no. 3, 4 2015.

[3] G. Salles-Loustau, L. Garcia, K. Joshi, and S. Zonouz, “Don’t just
BYOD, Bring-Your-Own-App Too! Protection via Virtual Micro Secu-
rity Perimeters,” in IEEE/IFIP International Conference on Dependable
Systems Networks, 6 2016.

[4] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in Proceedings
of the 18th ACM conference on Computer and communications security
- CCS ’11. New York, NY, USA: ACM Press, 2011, p. 75.

[5] T. Bao, H. Cao, E. Chen, J. Tian, and H. Xiong, “An Unsupervised
Approach to Modeling Personalized Contexts of Mobile Users,” in 2010
IEEE International Conference on Data Mining. IEEE, 12 2010, pp.
38–47.

[6] V. Srinivasan, S. Moghaddam, A. Mukherji, K. K. Rachuri, C. Xu,
and E. M. Tapia, “MobileMiner: mining your frequent patterns on your
phone,” in Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing - UbiComp ’14 Adjunct. New
York, NY, USA: ACM Press, 2014, pp. 389–400.

[7] A. Mukherji, V. Srinivasan, and E. Welbourne, “Adding intelligence to
your mobile device via on-device sequential pattern mining,” in Pro-
ceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing Adjunct Publication - UbiComp ’14 Adjunct.
New York, NY, USA: ACM Press, 2014, pp. 1005–1014.

[8] K. Farrahi and D. Gatica-Perez, “A probabilistic approach to mining
mobile phone data sequences,” Personal and Ubiquitous Computing,
vol. 18, no. 1, pp. 223–238, 1 2014.

[9] A. Mannini and A. M. Sabatini, “Machine Learning Methods for
Classifying Human Physical Activity from On-Body Accelerometers,”
Sensors, vol. 10, no. 2, pp. 1154–1175, 2 2010.

[10] D. K. Jonathan Feng-shun Lin, “Automatic Human Motion Segmentation
and Identification using Feature Guided HMM for Physical Rehabilita-
tion Exercises,” in IEEE/RSJ Int. Workshop Conf. Intelligent Robots and
Systems (IROS), Robot. Neurology Rehab., 2011.

[11] L. A. Castro, J. Beltrán, M. Perez, E. Quintana, J. Favela, E. Chávez,
M. Rodriguez, and R. Navarro, “Collaborative Opportunistic Sensing
with Mobile Phones,” in Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, ser. UbiComp ’14 Adjunct. New York, NY, USA: ACM,
2014, pp. 1265–1272.

[12] J. Mantyjarvi, J. Himberg, and P. Huuskonen, “Collaborative context
recognition for handheld devices,” in Proc. of the International Confer-
ence on Pervasive Computing and Communications (PerCom). IEEE,
3 2003.

[13] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu,
and A. T. Campbell, “Darwin Phones: The Evolution of Sensing and
Inference on Mobile Phones,” in Proc. of the International Conference

on Mobile Systems, Applications, and Services (MobiSys). New York,
NY, USA: ACM, 2010.

[14] H. Polat and W. Du, “Privacy-preserving collaborative filtering using
randomized perturbation techniques,” in Proceedings of the Third IEEE
International Conference on Data Mining. Melbourne, Florida: IEEE
Computer Society, 2003, p. 756.

[15] R. Parameswaran and D. M. Blough, “Privacy Preserving Collaborative
Filtering Using Data Obfuscation,” in 2007 IEEE International Con-
ference on Granular Computing (GRC 2007). IEEE, 11 2007, pp.
380–380.

[16] S. Guo, S. Zhong, and A. Zhang, “A Privacy Preserving Markov
Model for Sequence Classification,” in Proceedings of the International
Conference on Bioinformatics, Computational Biology and Biomedical
Informatics - BCB’13. New York, NY, USA: ACM Press, 2007, pp.
561–568.

[17] S. Renckes, H. Polat, and Y. Oysal, “Providing predictions on distributed
HMMs with privacy,” Artificial Intelligence Review, vol. 28, no. 4, pp.
343–362, 12 2007.

[18] H. Kikuchi, H. Kizawa, and M. Tada, “Privacy-Preserving Collaborative
Filtering Schemes,” in 2009 International Conference on Availability,
Reliability and Security. IEEE, 2009, pp. 911–916.

[19] H. X. Nguyen and M. Roughan, “Multi-Observer Privacy-Preserving
Hidden Markov Models,” IEEE Transactions on Signal Processing,
vol. 61, no. 23, pp. 6010–6019, 12 2013.

[20] Wikipedia, “Plate Notation,” https://en.wikipedia.org/wiki/Plate
notation.

[21] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[22] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Advances in Cryptology — EUROCRYPT ’99.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238.

[23] M. Pathak, S. Rane, W. Sun, and B. Raj, “Privacy preserving probabilis-
tic inference with Hidden Markov Models,” in 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 5 2011, pp. 5868–5871.

[24] A. Chopra, “Comparative Analysis of Key Exchange Algorithms in
Cryptography and its Implementation,” IMS Manthan (The Journal of
Innovations), vol. 8, no. 2, 2015.

[25] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-based
smartphone energy optimization for everyday location monitoring,” in
Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems - SenSys ’11. New York, NY, USA: ACM Press, 2011,
p. 82.

[26] G. Heinrich, “Parameter estimation for text analysis,” University of
Leipzig, Tech. Rep., 2008. [Online]. Available: https://faculty.cs.byu.
edu/∼ringger/CS679/papers/Heinrich-GibbsLDA.pdf

[27] P. Blunsom, “Hidden Markov Models,” Dept. of Computer Science,
Utah State University, Tech. Rep., 2004. [Online]. Available:
http://digital.cs.usu.edu/∼cyan/CS7960/hmm-tutorial.pdf

[28] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing Latency for
Secure Distributed Computing,” in IEEE International Symposium on
Information Theory (ISIT). Aachen: IEEE, 2017.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

261

