
Low-latency Distributed Computation Offloading
for Pervasive Environments

Claudio Cicconetti
IIT, National Research Council

Pisa, Italy
c.cicconetti@iit.cnr.it

Marco Conti
IIT, National Research Council

Pisa, Italy
m.conti@iit.cnr.it

Andrea Passarella
IIT, National Research Council

Pisa, Italy
a.passarella@iit.cnr.it

Abstract—Future pervasive applications, like mobile aug-
mented reality, have huge bandwidth and computation demands
and very stringent delay constraints. Edge computing has been
proposed to cope with such challenging requirements, since it
shortens significantly the distance between the end users and the
servers. On the other hand, serverless computing is emerging
among cloud technologies to respond to the need of highly
scalable event-driven execution of stateless tasks. In this paper,
we investigate the convergence of the two to enable very low-
latency execution of short-lived stateless tasks whose computation
is offloaded from the user terminal to servers hosted by or
close to edge devices in mobile pervasive environments. We
realized a proof-of-concept implementation to delve into the
specific issue of efficient dispatching of tasks in a distributed
manner to achieve high scalability. We evaluated our proposed
algorithm with experiments in a large-scale emulated network
environment, showing that our solution achieves similar or better
delay performance than a centralized solution, with far less
network utilization.

Index Terms—online job dispatching, serverless computing,
computation offloading, edge computing

I. INTRODUCTION

Nowadays there are several pervasive applications that are
computationally intensive while having stringent delay re-
quirements, but whose computations do not depend on the
device’s state. Examples include Augmented Reality (AR) and
location-aware real-time information services. In AR the most
challenging task, computationally speaking, is the analysis of
the image and the superimposition of artificial elements or
relevant information, which only depends on the last frame (or
sequence) captured. In real-time information services the user
is provided with the result of a joint analysis involving low-
volume user data, such as location or sensor measurements,
and high-volume external data/models. All such applications
are suitable for delegation of the logic to a third party,
which brings several advantages. First, an application can
exceed the computational capabilities of the device on which
it is running. Second, delegation extends the charge cycle
of battery-operated mobile devices because the bulk of the
computation is not done by the device itself. Currently, compu-
tation offloading is implemented via Mobile Cloud Computing
(MCC), which has the further benefits of automatic installa-
tion/upgrade of applications, scalable resource allocation and
flexible billing.

... ...

Internet

Serverless executors

Task
dispatcher

Data center

(1)
(2)

Client

Edge hosts

(1)
(2)

(1)
(2)

(a) (b) (c)

Edge computing domain

(1)
(2)

Computers

Dispatchers

Client

Client

Fig. 1. Comparison of architectures for (a) edge computing, (b) serverless
computing, and (c) proposed merge of the two.

Unfortunately, MCC creates a trade-off for latency-sensitive
applications: offloading to a remote data center may incur
longer response times due to sheer (network) distance between
the application portion hosted by the user device and its
cloud counterpart. To reduce latency, without dropping the
main benefits of MCC, edge computing has emerged as a
new paradigm where the functions that have been traditionally
located in a remote data center are called back to some
point nearer to the user [1], e.g., networking devices in the
access network with spare or added computational capabilities.
Edge computing technologies are being driven by vertical
market segments, including: Internet of Things (IoT), for
which a reference architecture has been published by the
OpenFog Consortium [2]; the automotive and mobile network
domains, which are of great interest to the telecom industry,
which has recently standardized an inter-operable Multi-access
Edge Computing (MEC) within European Telecommunica-
tions Standards Institute (ETSI) [3]. However, edge computing
has its limitations when used in a pervasive environment with
mobile devices: as shown in Fig. 1 (a) once an application has
been provisioned on a given edge node, which is optimal for
the current user position, if the user roams towards a different
point of attachment the network must either accept increased
latency due to sub-optimal routing (top part) or pay the cost
of a migration of the application to another edge node (bottom
part), which could also cause a service interruption.

To overcome this limitation we propose to merge the con-
cepts of edge computing and serverless computing. Serverless
computing [4] is a novel paradigm originating from cloud
computing where clients request the execution of short-lived

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5386-9148-9/19/$31.00 ©2019 IEEE 262

“light” jobs, e.g, a script in a given run-time environment, most
often Python or Node.js. Such jobs are stateless, hence they do
not require a full life-cycle management of the application nor
the persistent allocation of resources on the remote server. This
way, inherent scalability is achieved: ideally, no performance
bottleneck exists as the number of monitoring events grow, as
long as new locations for the execution of tasks are added.
Existing solutions for serverless computing, such as Apache
OpenWhisk1 and Kubeless2, adopt a logically centralized load
balancer to dispatch the jobs to the servers, as show in Fig. 1
(b).

To the best of our knowledge, this is the first work where
serverless computing is considered for the computational of-
floading of tasks in pervasive environments. In particular, we
propose a solution for the execution of stateless jobs, called
lambda functions, on edge nodes. Briefly, an edge computing
domain is illustrated in Fig. 1 (c) and consists of: computers,
which have computational capabilities to offer, because either
they have spare resources, as often found in many networking
devices, or they have been provisioned specifically for this
purpose; clients, which are User Terminals (UTs) wishing to
use said capabilities because it is impossible or inefficient
for them to perform the computation directly; dispatchers,
which are the entry points to the edge computing domain for
clients. Clients perform Remote Procedure Calls (RPCs) on
the dispatchers, which select the most suitable computer to
run each function, forward to it the client request, then get
back the result to the client. The RPC is short-lived: the input
is contained in the request, the output in the response, and
the call is closed immediately after completion to avoid the
persistence of long-term states in the network. The architecture
is fully distributed: dispatchers use only their local infor-
mation to take decisions on which computer should execute
the incoming function. Because of the ephemeral nature of
lambda transactions, these decisions are not affected by the
relocation of Virtual Machine (VM)/containers on computers,
which happens far more sporadically. Such microservice-based
approach is especially suitable to small devices acting as com-
puters because the lambda execution bootstrapping overhead is
negligible compared to that of loading a VM/container and the
memory/storage footprint is reduced due to the absence of an
application state on the computer. The proposed architecture
achieves: i) low latency, since we cut away all the detours
through the centralized decision point; ii) scalability, because
the size of the decision problem at each dispatcher grows
linearly with the number of computers; iii) reliability, as the
failure of a dispatcher only affects the clients currently using
it while the rest of the system runs without degradation.

The proposed solution has many research challenges as-
sociated. In this paper we focus specifically on the online
algorithm used by the dispatchers to select the computer that
will run a given function at a given time. As discussed in
further details in Sec. II, state of the art solutions address on

1https://openwhisk.apache.org/
2https://kubeless.io/

the one hand edge scenarios where tasks last much longer
than in our case, and therefore tasks allocations need to
be decided and changed much less frequently than in our
reference environment. On the other hand, when tasks are
“light-weight” as in our case, the target scenario is typically
that of tasks scheduling in multi-core data centers, which is
clearly a much more controlled and centralized environment
than ours. We implemented a proof-of-concept of the proposed
system to evaluate the online dispatching algorithm compared
to a centralized approach, as commonly found in serverless
computing in data centers, and a known online algorithm from
the literature [5].

The remainder of this paper is organized as follows. In
Sec. II we review the relevant state of the art. In Sec. III
we describe the proposed system architecture and dispatching
solution, which is then evaluated in Sec. IV. Conclusions are
drawn in Sec. V.

II. STATE OF THE ART

The contribution of this paper is two-fold: we propose an
architecture for the convergence of the edge computing and
serverless computing paradigms and we study the challenging
problem of distributed dispatching of lambda functions to
computers.

On the one hand, with regard to the architecture, in the sci-
entific literature there are several proposals on how to realize
computation offloading in edge computing. However, the vast
majority are based on some form of lightweight orchestration,
as compared to having a true “cloud” with VMs, by scaling
down cloud-oriented paradigms to less powerful servers and
faster dynamics. Examples include Picasso [6], from which
we reuse the concept of providing the applications with an
Application Programming Interface (API) whose routines are
executed by the network in a manner transparent to clients,
and foglets [7], which use containers for an easier and faster
migration of functions based on situation-awareness schemes.
Both studies put forward efficient ways to periodically tune
the deployment of containers in edge servers, which is very
relevant to our work but not addressed here.

In addition to generic architectures, such as what we pro-
pose in this paper, there are solutions tailored to specific
scenarios. In [8] the authors exploit Information-Centric Net-
working (ICN) to realize a paradigm called Named Function
as a Service (NFaaS), where the functions are automatically
distributed over ICN-enabled servers based on their utilization.
Again, this could be a suitable complement to our present
contribution, where we focus mostly on the short-term dispatch
problem over an interval small enough that we can assume
that the functions on the computers are stable. It is interesting
to point out that to reduce the latency of setting up/tearing
down the application, it is suggested that the servers employ
unikernels [9], which are an extreme form of containeriza-
tion. Finally, in [10] the authors propose an architecture to
distribute jobs from IoT devices to a set of gateways by
means of dynamic data plane manipulation: since all the
client requests pass through the Software Defined Networking

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

263

(SDN) controller, the latter can estimate the arrival process and
allocate new requests to servers accordingly. Unfortunately,
such information is not available in a fully distributed approach
such as ours.

On the other hand, from a high level perspective, the
distributed dispatching problem can be described as follows,
from the point of view of a given dispatcher. There are a
number of lambda functions (or jobs) that will arrive over
time and will have to be dispatched to a pool of computers,
with the goal of minimizing their response time. The arrival
process and the execution times are not known a priori. So
far, this is a set-up for a classical multi-server scheduling
problem, that has been extensively studied in the literature
due to its huge importance in designing efficient schedulers
in multi-core systems, both stand-alone and in grid/cloud
environments. A known result is that no online algorithm3

can have a bounded competitive ratio, see, e.g., [11]. In
the same work the authors also propose a programmatic
methodology to derive approximation algorithms that have a
bounded competitive ratio in a speed augmentation model, i.e.,
by assuming that the online algorithm is given extra resources.
One major difference with an edge computing scenario is that
the multi-server scheduling problem assumes that the servers
are used exclusively and that the policy for the execution
of the jobs within each server is also under control. Both
assumptions are false in our system: i) any computer can be
assigned jobs by multiple non-communicating dispatchers, and
ii) we cannot reasonably assume to have influence (or even
insight!) on the scheduling within computers, which are highly
heterogeneous (ranging from a Wireless Local Area Network
(WLAN) routers to multi-core servers in a Mobile Network
Operator (MNO) core network) and shared (e.g., a telco server
may offer computational capabilities while also implementing
Virtual Network Functions (VNFs)). Furthermore, different
computers may have different communication latencies with
the dispatcher, and they may vary over time since the network
of an edge computing domain is expected to be also (well,
actually mostly) used for Internet access.

A closer view is taken in [5], which in fact deals more
specifically with edge computing. The authors propose an ap-
proximation algorithm to minimize the total weighted latency
of the jobs, where the weight is assumed to be generically
related to the delay-sensitiveness of the job. The algorithm
is proved to be O(1/ε)-competitive in the (1 + ε)-augmented
problem. The algorithm takes into account the communication
latencies, which are assumed to be known for a given job,
and it requires the processing time of every incoming job
if executed on any given computer, which in general is
not available. In our proof-of-concept we implemented the
algorithm proposed in [5] when using emulated computers,
which can provide the exact processing time of a job if no
other arrives until its completion, as described in Sec. III-C.

3An online algorithm is one that takes a decision on a per-job basis and
is not allowed to remain idle, in contrast to offline algorithms that have
knowledge of past and future task arrivals, hence, may decide to delay a
task even when the servers are idle to maximize the objective function.

Comparison results with our proposed algorithm are reported
in Sec. IV-B.

Finally, we mention the work of Edinger et al. [12], who
envision a system where computation consumers (' clients)
contact brokers (' dispatchers) that direct them to the most
suitable computation producers (' computers), who are then
contacted directly for the execution of so-called “tasklets”
(' lambdas). Even though this environment looks similar
to an edge computing scenario, there are two fundamental
differences. Firstly, the tasklet scenario is flat, and brokers
are introduced merely for scalability reasons, whereas an edge
computing network is well structured, with clients logically
separated from computers by access network gateways, which
we use as dispatchers: in this structure the latter can easily
monitor execution of lambda requests, which always pass
through them, unlike brokers for tasklets. Secondly, tasklets
are assumed to be executed by end user devices, utterly
unreliable. In fact, the most important scientific result of [12]
is a scheduling algorithm that reduces the number of execu-
tion failures by estimating the reliability of producers. Such
contribution is not directly applicable to our case because the
computers are devices specifically committed to computation
offloading and, thus, can safely be assumed to disconnect or
fail very sporadically.

III. SERVERLESS EDGE COMPUTING

In this section we describe the solution envisaged for
the execution of stateless tasks, which is most suitable to
applications like AR or real-time picture/video manipulation,
with high computational demands but without a complex state
or heavy storage usage. Then we delve into the design of
the distributed algorithm for dispatching lambda functions to
edge servers. We conclude the section with an overview of our
proof-of-concept implementation.

A. Architecture

First of all, we briefly describe a typical serverless architec-
ture, which is useful to better understand the novelty that we
propose. As a reference implementation we use OpenWhisk,
whose architecture is illustrated in Fig. 2. In addition to
the clients, i.e., the applications that issue lambda functions,
and invokers, i.e., the servers that actually run them, there
are several ancillary components: NGINX4 is an Hyper-Text
Transfer Protocol (HTTP) load balancer that shapes client
requests; Kafka5 is a pub/sub platform that is employed to
serialize the transactions with the invokers; CockroachDB6 is
employed to provide Authentication and Authorization (AA),
to collect all possible actions and to store the transaction
results. Additionally, the OpenWhisk controller plays a central
role since it glues all the other back-end components together
and is in charge of deciding which invoker to activate for a
given function. As the controller receives a lambda execution
request, after client’s AA, it sets up a docker container on

4https://www.nginx.com/
5https://kafka.apache.org/
6https://www.cockroachlabs.com/

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

264

clients

pool of
invokers

OpenWhisk
controller

CockroachDB

NGINX

Kafka

Fig. 2. Apache OpenWhisk architecture.

the selected invoker and runs the script/program downloaded
from CockroachDB, whose results is eventually returned to
the client.

OpenWhisk, like other serverless computing systems, can-
not be used for computation offloading of delay-sensitive per-
vasive applications in edge networks, because in this context
both the clients and the edge servers are distributed in a large
geographical area and are interconnected with links having
limited capacity and introducing significant delays, compared
to the maximum tolerable latency.

The proposed architecture is illustrated in Fig. 3. We con-
sider a generic Mobile Broadband Wireless Access (MBWA)
where UTs connect to base stations, which are then intercon-
nected though a core network of backhaul network devices.
We assume that devices with computational capabilities, called
computers, are co-located with the base stations, though not
necessarily all of them, and with some of the core network
devices. Such computers, in general, will have heterogeneous
capabilities and may be equipped with hardware that is
most suitable to execute a specific type of lambda functions,
e.g., Graphics Processing Unit (GPU) for AR and video
transcoding [13]. This is another difference with respect to
the serverless computing world, where all the invokers are
homogeneous and very often consist of specifically deployed
VMs in the same facility. The base stations, which are the entry
point to the network services for clients, act as dispatchers.
In practice these base stations could be Long Term Evolution
(LTE) e-NBs or WLAN access points or a mix of them.

We split the main system functions into two categories:
offline and online. Offline functions are performed indepen-
dently of lambda transactions and are expected to happen
on a long time scale (minutes and above). Online functions
are those associated to every lambda transaction, thus may
happen at very short time scales (seconds and below). Since
latency is a primary concern for pervasive real-time applica-
tions, we push as many functions as possible into the offline
category: AA, set-up of the VM/containers on the computers,
configuration of the dispatchers. Such offline functions are
enabled by a logically centralized entity, called controller,
which is represented as a server in the core network in
Fig. 3. The controller learns about the existence of capabilities
of new computers and dispatchers, respectively, and runs a
periodic optimization to modify the lambda functions offered

computers

dispatchers

controller

clients

networking devices

Fig. 3. Proposed distributed system architecture.

client dispatcheri computerj

invoke(lambdak,input)

invoke(lambdak,input)

result

result

decision
time

Fig. 4. Lambda request/response sequence.

by the computers. In the literature, the latter is referred to as
“service placement” and some studies have already addressed
this topic, e.g. [14], far from exhausting it, especially if
heterogeneous hardware is considered. We do not address this
issue here, and assume in the rest of the paper that in between
consecutive re-organizations the set of VM/containers, hence
lambda functions, in every computer is stable, thus lambdas
can immediately be put into execution upon arrival from
dispatchers, provided that there is sufficient hardware and
software available: e.g., Central Processing Unit (CPU) and
memory, pre-allocated workers and Operating System (OS)-
related resources.

In Fig. 4 we show the sequence diagram of the only online
function: the request of the activation of a lambda function
from a client, also including the function input, its forwarding
to the appropriate computer, and the final communication of
the result to the issuing client. In the next section we discuss
the matter of selecting the best computer for the execution of
a lambda function, called the distributed lambda dispatching
problem.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

265

B. Distributed lambda dispatching

We now present the algorithm for selecting the destination
of a given lambda function j ∈ L (‖L‖ = L) at time t,
provided that there is a set of C computers that can serve
it7, where ‖C‖ > 1. We call δjk(t) the delay of job j if
dispatched to computer k at time t. We can split δjk(t) into the
following components: τjk(t), which is the time required for
the transmission of the input from the client to the computer
and for receiving the response on the way back, also including
all queuing delays in intermediate transmission hops; and
pjk(t), which is the time required from processing the lambda
function j on computer k, which depends on its computational
capabilities and other concurrent tasks sharing the resources
with j until its completion. The components of the overall
job delay are illustrated in Fig. 4. Ideally, the dispatching
algorithm should select k̄ such that:

k̄ = arg min
k

{δjk} = arg min
k

{τjk + pjk}, (1)

where we have dropped the time t reference to simplify
notation. This policy is well known in the literature under
the name of Shortest Remaining Processing Time (SRPT)
and is widely employed in multi-server schedulers because
of its simplicity. In addition to having a bounded competitive
ratio, it has been also shown to be more resilient than other
sophisticated algorithms when the processing time is not
certain [15], which is precisely our case because both τjk and
pjk cannot be known in advance. Therefore, we define δ̂jk
as the estimated delay of job j if dispatched to computer k,
and similarly for τ̂jk and p̂jk. Below we address the research
challenge of estimating τ̂jk and p̂jk in a manner that is
i) effective, to emulate as closely as possible the behavior of an
ideal SRPT scheduler, ii) simple, because the dispatcher has
limited resources compared to, e.g., cloud servers in a data
center, iii) fast, since we are targeting low-delay applications,
therefore we cannot afford to linger too long on the decision
of where to direct the lambda function, and iv) subject to
uncertainty, for the dispatcher uses only local information,
which is bound to become outdated quite fast in a highly
dynamic pervasive environment.

1) Communication latency estimation: As far as τ̂jk is con-
cerned, we propose a simple, yet effective, mechanism: when
a computer is assigned a lambda function, it piggybacks the
processing time into the response containing the result. This
allows the dispatcher to sample the communication latency
with every computer by simply keeping track of the overall
time required for the job execution. Note that the dispatcher
and computer do not need be synchronized since both time
intervals are relative. With some simplifications, we can con-
sider the communication latency as composed of two major

7As a recap, this means that the controller, or any other orchestration
function in the network, has configured all the VM/container/run-time envi-
ronments necessary for the execution of that lambda function on all computers
in C and that the dispatcher has been informed of such function placement
before job j arrives.

components: a fixed offset, which depends only on the network
topology and communication technologies used, and a variable
quantity that is proportional to the amount of data transmitted.
If we further assume that the lambda function output is either
negligible compared to the input or proportional to it, then the
dispatcher can collect for every computer a moving window of
communication latency samples, obtained from the execution
of any lambda function, and perform a simple linear regression
to derive τ̂jk once job j arrives, hence its input size is known.
More sophisticated approaches can be used without affecting
the core of our contribution.

2) Processing time estimation: The estimation of the pro-
cessing time p̂jk is more challenging. In general, predicting
the processing time of a non-trivial algorithm executing on
a shared general-purpose computer is extremely difficult, be-
cause the result depends on a huge number of factors and
contingent conditions. It is beyond the scope of this paper to
investigate the issue in full details, as done for instance in [16],
where the authors propose a Machine Learning (ML)-based
cloud task execution prediction framework. Furthermore, ac-
curate prediction requires application- and scenario-specific
details to achieve best accuracy. On the other hand, we propose
the following practical scheme that can be used in general
cases, i.e., without a priori knowledge of the algorithms and
the internal details of computers (OS, scheduling policy, etc.).

Firstly, we assume that every computer is able to piggyback
on the responses the current system load. This assumption
is rather weak since every modern OS is able to provide
effortlessly such information to its applications8

Secondly, we observe that in practice it is reasonable to
expect an increasing relation between the processing time of
a given lambda function with given input size and the load
in the recent past: if a computer has been heavily loaded in
the last few seconds, then it is likely that it will be still so
in the near future, thus extending the execution time of any
new job assigned. Also, for a given computer, the processing
time will generally increase as the input size increases, all
other conditions (e.g., the load) being the same. Therefore,
we propose that every dispatcher keeps track of the past
processing times occurred, together with the lambda input
size and the load reported by the computer. This provides
all dispatchers with the following 2D mapping for any given
lambda and computer:

〈size, load〉 → processing time (2)

that can be used to extrapolate p̂jk.
In this work we take a simplistic approach and assume

that pjk is a linear function of both the lambda input size
and the computer load. Under this assumption, estimation of
the processing time can be done by finding the plane that
best fits the population of samples collected. Since this fitting

8Though it may require careful consideration if VM or containers are
involved since the “system” load may not correspond to the achievable load
because of virtualization/isolation mechanisms; this is a mere implementation
detail, though.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

266

320 640 960 1280
 20

 40
 60

 80
 100 200

 400

 600

 800

Pr
o
ce

ss
in

g
 t

im
e
 (

m
s)

samples
linear fit (2D)
linear fit (1D)

Lambda input size (image width, in px)

Load reportedPr
o
ce

ss
in

g
 t

im
e
 (

m
s)

Fig. 5. Example of 2D and 1D linear fitting of processing data values in the
dispatcher, for each computer k and lambda function j.

must be updated at every new lambda, we further propose
to reduce the computational complexity by quantizing the
lambda input size into a set of discrete values, then finding
a 1D linear fit as a function of the load values only. This
process is visualized in Fig. 5, which shows the population
of processing time values as a function of the lambda input
size and load reported collected by a dispatcher during one of
the experiments described in Sec. IV-A below. The details of
the experiment are irrelevant at this stage, but we anticipate
that real computational offloading, i.e., face detection on static
images, is being performed. As can be seen, there are four
possible image sizes, yielding an equal number of lambda
input sizes, and the processing time increases as either the
input size or the load reported increases. In the 3D plot we
show both a linear regression of the 2D plane and four 1D
linear regressions, one per lambda input size: the 1D linear
regressions are very close to the 2D plane, but they can be
achieved at a fraction of the time complexity, which confirms
the above working assumption.

If the assumptions in this section do not apply to a specific
scenario, for instance the execution time does not correlate
to the input size, then another processing time estimation
algorithm (e.g., one more sophisticated or that has white-box
knowledge of the applications or computers) can be plugged in
seamlessly when implementing the edge dispatching, without
affecting the overall framework proposed.

3) Overall dispatching algorithm: To summarize, every
time a lambda function j of size Sj is correctly executed
by computer k, which reports load uk and processing time
pjk, the dispatcher performs the following house-keeping
operations:

1) measure the communication latency τjk as the difference
between the overall lambda execution time, which is a
local information, and pjk;

2) add {Sj → τjk} to a moving window of Wτ samples and
find the intercept/slope values ατk/βτk that best fit them;

3) quantize Sj as S′ to the closest value among the WS

possible ones;
4) add {uk → pjk} to a moving window of Wp samples

and find the intercept/slope values αpS′jk/βpS′jk that best
fit them.

The final dispatching algorithm for an incoming lambda

function of type j, whose input is Sj , quantized as S′, consists
of finding the destination computer k̄ s.t.:

k̄ = arg min
k

{
(ατk + βτkSj) +

(
αpS′jk + βpS′jkuk

)}
(3)

To achieve high scalability with non-specialized hardware,
it is important that the dispatching algorithm remains as simple
and fast as possible as the number of computers and lambda
functions grow. The worst-case computational complexity, in
both space and time, of the main algorithm components is
reported in Table I, where the house-keeping rows refer to
operations that are carried out upon receiving a successful
response from a computer. We briefly recall the notation used
in the table: L is the number of possible lambda functions, C
is the number of computers in the edge network, and Wτ , WS ,
and Wp are the internal parameters representing the number of
communication latency samples kept per computer, the number
of quantized input sizes, and the number of processing times
kept per lambda per computer, respectively.

TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS.

Algorithm Space Time
Communication latency house-keeping O(WτC) O(Wτ)

Processing time house-keeping O(LWpWSC) O(Wp)
Dispatching – O(C)

C. Proof-of-concept implementation

To demonstrate the feasibility of the proposed architecture
and evaluate the performance of the distributed lambda dis-
patching algorithm we implemented a proof-of-concept. We
realized all the components involved, i.e., clients, dispatchers,
computers, and controller. To simplify the discovery phase, we
assumed that every computer and dispatcher registers itself to
the controller at a known Uniform Resource Locator (URL).
To achieve interoperability in a real deployment we envisage
adopting standard APIs, such as those defined by the ETSI
MEC [17]; such an opportunity will be investigated in a future
work.

Execution of lambda functions has been implemented by
means of REST interface methods using Google’s gRPC9.
Every lambda request contains the following fields: the name,
that is used to identify the container or run-time environment
to be used; the input, that is opaque to the edge computing
components A lambda response contains: a return code spec-
ifying what went wrong, if anything; the output; the URL of
the computer actually carrying out the computation; the time
required for the execution of the lambda; the response, opaque
to the edge computing components; a short-term average
load of the computer before the execution of the lambda
function. In the prototype, our applications, written in C++,
call directly the REST methods on the dispatcher to which

9http://grpc.io

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

267

they are attached, but integration with any other high-level
programming language is possible since the gRPC library is
platform and language independent.

We implemented two types of computers. Firstly, an image
manipulation computer that performs face detection using the
OpenCV library10. We selected image manipulation as an
example application since the latter, together with AR, is a
key application that can benefit from computational offloading
in a pervasive environment. However we are not interested
on the details and challenges associated to the specific use
case and we refer the interested reader to, e.g., [18]. Sec-
ondly, an emulated computer, that performs arbitrary functions
without really implementing any algorithm: rather, it just
simulates internally the execution of the currently scheduled
lambda functions to mimic the behavior of a multi-core multi-
container edge server, where tasks are served according to a
First Come First Serve (FCFS) non-preemptive policy. The
simulated processing time depends on the input size and the
actual model: in the experiments reported in the next section
we have used a linear model where the processing time of a
lambda function arriving on an empty computer is given by a
constant offset plus the input size (in bytes) times a constant
slope value. This type of computer is very important for perfor-
mance evaluation purposes: i) it allows to scale experiments up
to large networks without requiring prohibitive computational
capabilities, ii) it enables the execution of sensitivity analysis
studies, having a totally known and controllable response, and
iii) finally it allows the implementation of the comparison
algorithm proposed in [5] because it can predict the completion
time of jobs (if no other arrives meanwhile).

IV. PERFORMANCE EVALUATION

In this section we evaluate the distributed lambda dispatch-
ing algorithm with our proof-of-concept implementation in
two setups: a small-scale network of edge nodes, equipped
with real face detection capabilities; a more realistic large-
scale environment where we have used emulated computers.

Network emulation is done with Mininet11, as proposed in
EmuFog [19], which provides a wrapper for an easier configu-
ration of edge/fog computing topologies. In all the experiments
we have used Wτ = Wp = 100 based on preliminary
calibration experiments whose results are not reported here due
to space limitations. The value of WS depends on the specific
experiment and is indicated in the respective sections below.
For all these dispatching algorithm internal parameters we
have found in the experiments performed that small variations
have a negligible effect on the results. Further details on the
evaluation tool are available in [20].

A. Small-scale experiments

In this set of experiments we arranged four edge nodes
interconnected in a clique with 100 Mb/s links with 1 µs
latency. This is representative, for example, of a local edge
environment supporting a group of mobile nodes, deployed by

10https://www.opencv.org/
11http://mininet.org/

TABLE II
RESPONSE TIMES OF THE LAMBDA FUNCTIONS USED IN THE

EXPERIMENTS WITH AN EMPTY COMPUTER.

Size Comp. only (ms) With network (ms)
Face detection (real)

320×240 43 ± 9 60 ± 10
640×480 101 ± 10 218 ± 26
960×720 181 ± 13 446 ± 47

1280×960 301 ± 13 744 ± 45
Augmented reality (emulated)

5000 bytes 9.0 ± 0.2 12.1 ± 0.4
10000 bytes 17.5 ± 0.2 24.1 ± 0.3
15000 bytes 25.9 ± 0.2 35.9 ± 0.5

edge nodes

tagged
clients

clients

Fig. 6. Network topology used in the small-scale testbed experiments.

a MEC operator through a set of edge gateways located close
to each other. Each edge node hosts an image manipulation
computer that can perform face detection via the execution of
lambda functions as described in Sec. III-C. The computers
are assigned different capabilities: the computer on node i,
with i ∈ [1..4], can use up to i CPU cores among those
available in the server hosting the experiments. All clients
connect to the edge nodes via links with 25 Mb/s capacity with
100 µs latency. For the convenience of evaluation we measure
the latency of “tagged” clients only, one per edge node,
that issue, on average, one lambda request per second with
picture size 640x480 pixels according to a Poisson distribution.
The number of other clients, requesting detection on pictures
randomly drawn from a set of images from 320x240 to
1280x768 pixels and roaming from one edge node to another
selected randomly, increases from 1 to 4. In these experiments
it is WS = 4. The response times for the different image
sizes are reported in Table II (top section). The variance of
the face detection response times is rather high due to the ML
algorithm used in the OpenCV library for detection.

We compare the performance obtained with our proposed
dispatching solution, called Est in the following, with two
alternative approaches. First, a Round Robin (RR) algorithm,
taken from our previous work [20], which classifies the
computers based on lower vs. higher response time, then
dispatches the incoming lambda request to the computers that
are currently in the lower category. RR does not distinguish
between communication and processing delays and does not
use the load values reported by the computers. Second, we

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

268

 0

 100

 200

 300

 400

 500

 1 2 3 4

9
0

th
 p

e
rc

e
n

ti
le

 o
f

d
e
la

y
 (

m
s)

Number of other clients

Est
Legacy
RR

Fig. 7. Small-scale experiment: 90th percentile of delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4

A
ve

ra
g
e
 l
o
a
d

Edge node#

Est
Legacy
RR

Fig. 8. Small-scale experiment: Distribution of load across edge computers,
with four other clients.

consider a Legacy approach, where the clients simply request
the execution to the closest computer, in number of hops.

Every experiment has been repeated 10 times: in the plots
we report the average and 95% confidence interval over all
the replications.

In Fig. 7 we show the 90th percentile of the delay of
tagged clients. As can be seen, at low network loads RR
performs worse that the others, because it strives to use
evenly the available computers, which however have different
capabilities. This behavior pays off at high loads, where, on
the other hand, Legacy is penalized because it cannot cope
well with “hot spots” of clients. In all cases the Est curve lies
always below the others: our proposed approach can adapt well
to mixed environments. Recall that this is achieved in a fully
distributed manner and without providing Est with any a priori
knowledge on the topology and capabilities of computers.

The reason is explained with the use of Fig. 8, which
shows the average load of the computers at peak load. As
can be seen, Legacy has an almost flat utilization, which is
inefficient since the load is evenly distributed across edge
nodes but the capabilities are not. On the other hand, both
Est and RR distribute the load proportional to where there
are more resources. For instance, even though computer 1 has
lowest capabilities, it has non-negligible utilization with Est,
which is thus able to harvest resources even from less powerful
computers as necessary.

B. Large-scale topology

In this section we report the results obtained with a large-
scale realistic network topology, where lambda functions are
executed on emulated computers. The target application is
AR on mobile devices in a dense urban environment. We use
as reference real-world traces available as open datasets and

described in [21], which include recordings of human activity
in the city of Milan (Italy) for one month. The city landscape is
divided into a square grid of 10,000 cells. We assume that each
cell contains a base station serving users divided into three
sectors. Base stations are grouped into sets of three elements,
forming so-called pods, that are then connected to a common
core. The resulting network topology is a fat-tree, commonly
found in data-centers and operator core networks [22], where
the network links between the root node and its children have
1 Gb/s with 10 µs latency, whereas capacity is halved in the
tier below. The links connecting the clients to their respective
base station have a 25 Mb/s capacity with 1 ms, which is
a slightly optimistic estimate with respect to actual findings
in current 4G networks [23]. The mapping of the city grid
into an emulated network for the experiments in illustrated in
Fig. 9. Each base station also acts as both a dispatcher and
a computer, with two cores entirely dedicated to processing
lambda functions.

For the experiments we used a Monte Carlo approach, which
is widely employed for system-level performance evaluation
of MBWA algorithms and protocols and is carried out as
follows. Inspired from the evaluation in [24], from a random
day in the dataset in [21] we extracted Internet activity with
a 10-minute granularity, that is used to determine the cell
load at every given time of day. Then, we perform a number
of independent snapshots (or drops) of the system12. For
each snapshot we select a random location of a group of
3x3 cells and a random time of day. Then, we drop users
with random arrival times with a rate that is proportional to
each cell activity at the given time. Each user establishes a
session of AR with a duration randomly extracted between
30 s and 60 s, consisting of a stream of lambda function
requests directed to the dispatcher co-located with the serving
base station. During a session, consecutive lambda functions
are issued every 33 ms, which corresponds to a frame rate
of 30 fps. The size of lambda requests/responses is such to
have bandwidth demands ranging from 3 Mb/s (lambda size
5000 bytes) to 10 Mb/s (lambda size 15000 bytes), which
according to the authors in [25] is a reasonable compromise
for good quality AR under realistic network constraints. The
response times of the lambda function with some image sizes
are reported in Table II (bottom section). We consider 75 ms
as the maximum tolerable round-trip delay for the execution
of a lambda function [25]. In the dispatchers we used a value
of WS such that lambda sizes are quantized every 1000 bytes.

We compare our proposed solution, called Dist Est (=
distributed with processing estimation) below, to the following
alternatives. First, a centralized approach where the dispatcher

12In the small-scale experiments we have measured and plotted confidence
intervals through the execution of multiple independent replications of the
very same scenario. With a Monte Carlo approach the notion of “independent
replication” is a lot more blurred because every drop represents a possible
state of the system at a given time, and any two drops may capture very
different conditions (e.g., night-time vs. peak hours). Therefore, rather than
taking averages and reporting some measure of the variance, as customary with
the method of independent replications, we report the full results obtained in
all the drops using distributions.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

269

city grid network viewcellular view

100

1
0

0

base stations sectors

core

pods

base stations

terminals
(per sector)

Fig. 9. Mapping of the city grid from [21] into the network topology used for the experiments.

is located in the root node of the topology tree, which
mimics the behavior of a typical serverless solution, such
as OpenWhisk. Second, an algorithm, called Dist Probe (=
distributed with probing), inspired from [5], that is distributed
but polls each computer to retrieve the execution time required,
then selects the one that advertised the smallest value. Such
an implementation is feasible since use emulated computers
(see Sec. III-C) can simulate precisely the future evolution
provided that no other jobs arrive. Third, like in Sec. IV-A,
Legacy, where the clients request the execution of lambdas to
their serving base station.

In Fig. 10 we report the 90th percentile of the delay
experienced by the fraction of users in the x-axis. For instance,
with Dist Est we have a value of 40 ms at 0.7 users: this means
that 70% of the users, at every random location and time of
day, experienced a 90th percentile of delay that is smaller
than 40 ms. Therefore, we can compare these values to the
75 ms target and find the fraction of dissatisfied users as the
complement to 1 of the x-axis projection of the point where
each curve meets 75 ms. In this respect, Legacy achieves
poorest performance: this is because a static allocation leads
to under-utilization of the computational resources, which is
consistent with the main finding in [26]. This is mainly due
to the fact that with Legacy we create “hot spots” of requests
at each base station whenever a high concentration of clients
appears at that base station. Instead, Dist Est achieves roughly
the same performance as Centralized, which however suffers
from a slightly higher number of dissatisfied users because
of the inconvenience of forcing all the transactions to pass
through the root node, i.e., the core network, which is more
prominent at high loads. Finally, Dist Est enjoys smaller delays
than Dist Probe is almost all cases, but the performance gap
lessens as the load increases. In particular, the fraction of
dissatisfied users for the two algorithms is the same, though
Dist Probe incurs a much more exorbitant cost in terms of
network consumption, as discussed below.

This effect of excessive resort to network, which negatively
affects the delay performance, is shown directly in Fig. 11,
which reports the overall average per-drop network through-
put, sorted on the y-axis values. Clearly, Legacy has minimum
network consumption because the computation offloading traf-
fic never leaves the base station. However, as can be seen, the
network overhead caused by Dist Est with respect to Legacy is

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

9
5

th
 p

e
rc

e
n

ti
le

 o
f

d
e
la

y
 (

m
s)

Fraction of users

Centralized
Dist Est

Dist Probe
Legacy
75 ms

Fig. 10. Large-scale experiment: Distribution of the 90th of delay.

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45

N
e
tw

o
rk

 t
h

ro
u

g
h

p
u

t
(M

b
/s

)

Drop#

Centralized
Dist Est

Dist Probe
Legacy

Fig. 11. Large-scale experiment: Network throughput per drop.

negligible compared to that of both Centralized and Dist Probe.
This confirms that our proposed dispatching algorithm is able
to achieve a good trade-off between wise utilization of the
computational resources available and protocol/architecture
complexity to achieve this goal, which ultimately benefits
application latency in addition to traffic exchange.

V. CONCLUSIONS

In this paper we have proposed a system to offload pervasive
applications with stringent delay requirements as stateless
functions on edge nodes with available computational capa-
bilities, called computers. The execution of functions passes
through edge nodes with dispatching capabilities, which are
ideally located as close as possible to the final users. The
proposed architecture is highly scalable as the number of both
the clients and the computers grow. We have implemented a
proof-of-concept of the proposed solution and, through a set of
experiments performed in an emulated network environment,
we have shown that such a distributed architecture performs
much better than statically allocating clients to computers and
the same as or better than both a centralized approach and a
distributed comparison solution from the literature.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

270

REFERENCES

[1] Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. Edge-
Oriented Computing Paradigms. ACM Computing Surveys, 51(2):1–34,
apr 2018.

[2] OpenFog Consortium Architecture Working Group. OpenFog Reference
Architecture for Fog Computing. OpenFogConsortium, (February):1–
162, 2017.

[3] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny
Dutta, and Dario Sabella. On Multi-Access Edge Computing: A Survey
of the Emerging 5G Network Edge Cloud Architecture and Orchestra-
tion. IEEE Communications Surveys and Tutorials, 19(3):1657–1681,
2017.

[4] Blesson Varghese and Rajkumar Buyya. Next generation cloud comput-
ing: New trends and research directions. Future Generation Computer
Systems, 79:849–861, 2018.

[5] Haisheng Tan, Zhenhua Han, Xiang Yang Li, and Francis C.M. Lau.
Online job dispatching and scheduling in edge-clouds. Proc. of IEEE
INFOCOM, 2017.

[6] Adisorn Lertsinsrubtavee, Anwaar Ali, Carlos Molina-Jimenez, Arjuna
Sathiaseelan, and Jon Crowcroft. Picasso: A lightweight edge computing
platform. Proc. of IEEE CloudNet, 2017.

[7] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachan-
dran, and Beate Ottenwälder. Incremental deployment and migration
of geo-distributed situation awareness applications in the fog. Proc. of
ACM DEBS, pages 258–269, 2016.

[8] Michał Król and Ioannis Psaras. NFaaS: Named Function as a Service.
Proc. of ACM ICN, pages 134–144, 2017.

[9] Anil Madhavapeddy and David J Scott. Unikernels: Rise of the Virtual
Library Operating System. Queue, 11(11):30:30—-30:44, dec 2013.

[10] Rhishi Pratap Singh, Jitender Grover, and Garimella Rama Murthy. Self
organizing software defined edge controller in IoT infrastructure. Proc.
of IML, 2017.

[11] S. Anand, Naveen Garg, and Amit Kumar. Resource Augmentation for
Weighted Flow-time explained by Dual Fitting. Proc. of ACM-SIAM
Symposium on Discrete Algorithms, pages 1228–1241, 2012.

[12] Janick Edinger, Dominik Sch, Christian Krupitzer, Vaskar Raychoud-
hury, and Christian Becker. Fault-Avoidance Strategies for Context-
Aware Schedulers in Pervasive Computing Systems. Proc. of IEEE
PerCom, 2017.

[13] A Albanese, P S Crosta, C Meani, and P Paglierani. GPU-accelerated
Video Transcoding Unit for Multi-access Edge Computing Scenarios.
Proc. of ACM ICN, pages 143–147, 2017.

[14] Onur Ascigil, Truong Khoa Phan, Argyrios G. Tasiopoulos, Vasilis
Sourlas, Ioannis Psaras, and George Pavlou. On Uncoordinated Service
Placement in Edge-Clouds. Proc. of IEEE CloudCom, pages 41–48,
2017.

[15] Rachel Mailach and Douglas G. Down. Scheduling Jobs with Estimation
Errors for Multi-server Systems. Proc. of International Teletraffic
Congress, pages 10–18, 2017.

[16] Thanh Phuong Pham, Juan J. Durillo, and Thomas Fahringer. Predicting
Workflow Task Execution Time in the Cloud using A Two-Stage
Machine Learning Approach. IEEE Transactions on Cloud Computing,
7161(c):1–1, 2017.

[17] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun
CDS-MEC: NFV/SDN-based Application Management for MEC in 5G
Systems. Computer Networks, 135:96–107, 2018.

[18] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo
Wang. A Survey on Mobile Edge Networks: Convergence of Computing,
Caching and Communications. IEEE Access, 5:6757–6779, 2017.

[19] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umak-
ishore Ramachandran. EmuFog: Extensible and scalable emulation of
large-scale fog computing infrastructures. Proc. of IEEE Fog World
Congress, 2017.

[20] Claudio Cicconetti, Marco Conti, and Andrea Passarella. An Architec-
tural Framework for Serverless Edge Computing: Design and Emulation
Tools. Proc. of IEEE CloudCom, 2018.

[21] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella,
Cristiana Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro
Vespignani, Alex Pentland, and Bruno Lepri. A multi-source dataset of
urban life in the city of Milan and the Province of Trentino. Scientific
Data, 2:150055, oct 2015.

[22] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. ACM SIGCOMM
Computer Communication Review, 38(4):63, 2008.

[23] Nicola Bui and Joerg Widmer. Data-Driven Evaluation of Anticipa-
tory Networking in LTE Networks. Proc. of International Teletraffic
Congress, pages 46–54, 2017.

[24] Alberto Ceselli, Marco Fiore, Marco Premoli, and Stefano Secci. Opti-
mized assignment patterns in Mobile Edge Cloud networks. Computers
and Operations Research, 0:1–14, 2018.

[25] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos,
and Pan Hui. Future Networking Challenges: The Case of Mobile
Augmented Reality. Proc. of IEEE ICDCS, pages 1796–1807, 2017.

[26] Francesco Malandrino, Scott Kirkpatrick, and Carla-Fabiana Chiasserini.
How Close to the Edge? Proc. of ACM CAN, pages 37–42, 2016.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

271

