
Context-Aware Data and Task Placement in
Edge Computing Environments
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Abstract—Computationally intensive tasks of IoT applications
can be offloaded to powerful devices in the edge. Code of-
floading reduces energy consumption and increases performance.
However, applications that use face recognition, machine learn-
ing, or image rendering, rely on large amounts of data. The
transfer of this data leads to latencies which contradicts the
responsiveness required by many pervasive applications. As a
solution, decoupling the data from the tasks allows to apply new
scheduling strategies that place data on remote devices before
the actual task execution. Grid computing approaches use this
technique effectively, however, edge computing introduces further
challenges such as device fluctuation and heterogeneity.

In this paper, we propose a data management approach for
edge computing environments that decouples data placement
from task scheduling. We present a multi-level scheduler, which
places data on resource providers in the system considering
multiple context dimensions. The scheduler allocates tasks ac-
cording to the current context and observes the state during
runtime. If required, the system adjusts the number of data
copies to optimize the trade-off between execution latencies and
data management overhead. The paper has three contributions:
(1) a context-aware multi-level scheduler, (2) the integration of
four data placement, three task scheduling, and three runtime
adaptation algorithms, (3) an evaluation in a real-world testbed.

Index Terms—Data placement, task allocation, middleware,
edge computing, distributed computing

I. INTRODUCTION

Offloading computation in grid and edge environments
has several benefits regarding execution performance, energy
consumption, and utilization of excess capacities [1]–[3]. For a
remote execution, systems generate closed entities of compu-
tation, which consist of code, parameters, and data [4]. These
tasks are shipped from a resource consumer, which runs the
application, to resource providers. The providers execute the
tasks and return results to the consumer. When tasks require
large chunks of data, scheduling becomes more crucial due to
data transfer times, storage restrictions, and varying provider
reliability. As a solution, the separation of data from the closed
computation entity offers new scheduling potential. If data
enters the system before the respective tasks, the system can
already place the data on resource providers. The transmission
of the actual task is then minimized to code and parameters.

The independent scheduling of data and tasks poses sev-
eral challenges such as workflow planning, optimal storage
utilization, and API support for developers. As far as data and
task placement is concerned, two questions arise in particular:
(1) how many data replicas should the environment store in

total and (2) which resource providers are most suitable to
store these replicas? The number of data replicas can range
from no replicas at all to a full replication where each provider
in the nearby environment maintains a local replica. The
overhead for a full replication in terms of data distribution,
occupied storage, and maintenance is large. However, this
replication strategy is most promising from a task execution
perspective since turnaround times do not contain any data
transfer latencies. On the other side, no replication or a single
replication is easy to create and maintain, but may lead to high
execution latencies. Between these two extremes, n-replication
strategies exist. These strategies can balance the trade-off
between data transfer overhead and execution delay as they
allow to adjust the number of replicas to the system context.

Data management is in the focus of distributed computing
researchers for decades. In cluster and grid computing, opti-
mized data placement leads to reduced execution times [5]–
[7]. However, the placement strategies are rather static due
to the stability of grid environments. With the emergence of
cloud computing, the problem moved in another direction [8]–
[11]. In cloud computing, the environment is mostly homo-
geneous. Edge computing environments now introduce new
challenges [12]. Devices are user-controlled and may leave
the system at any time. Further, the landscape of edge environ-
ments is heterogeneous. Hence, fluctuation and heterogeneity
increase the complexity for data placement strategies.

In this paper, we propose a data management system that
copes with the characteristics of the edge. It decouples data
and task scheduling and accomplishes resource allocation on
three levels: First, before the actual runtime of tasks, the data
placement level places data on providers considering the sys-
tem’s context. Second, the task scheduling level allocates tasks
on the most suitable providers. Third, the runtime adaptation
level monitors the quality level of task execution and adapts
data placement in a control loop if necessary. As a result, our
approach optimizes the trade-off between execution latencies
and data overhead based on the current context.

After the related work section, the remainder of this paper
contains our three contributions: First, a multi-level scheduling
architecture. Second, we present data and task allocation algo-
rithms that reduce task execution latencies while minimizing
the data overhead in edge environments. Third, we evaluate
our approach in a real-world testbed with three different
applications. Finally, we conclude our work in the last section.
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II. RELATED WORK

In distributed computing, data management and the de-
pendencies to task scheduling have always been a major
research focus. Our approach is related to prior research on
task scheduling and replication. Several approaches also offer
a combination of data and task scheduling similar to this paper.

1) Task scheduling: Early grid computing research has
already considered the impact of data transfer times for task
scheduling on remote providers [5]. Braun et al. [13] compare
11 heuristic algorithms for task scheduling in grids. The
majority of these algorithms considers data transfer times.
A genetic algorithm performed best in all scenarios. Several
related approaches such as [6], [7], [14]–[16] developed more
sophisticated grid scheduling strategies. In [17], McClatchey
et al. introduce DIANA, a context-aware scheduling strategy
that allocates tasks minimizing the network, computation, and
data transfer cost. Liu et al. [18] and Taheri et al. [19] use
nature-inspired algorithms to schedule workflows in the grid.
More recently, cloud computing research drew new attention
to scheduling strategies that consider data location [10], [11].
Casas et al. [20] present a scheduler for cloud computing
that allocates scientific workflows by exploiting data reuse
and replication strategies. Li et al. [21] propose a scheduling
strategy for batch jobs in MapReduce that considers the data
locality of tasks. In the context of edge computing, Elbamby et
al. [22] minimize computing latency via joint task offloading
and proactive caching of popular tasks. They use computing
as well as storage resources and consider the location of edge
nodes for the offloading decision. Although data location and
data transfer times are an important part of the aforementioned
scheduling approaches, none of them considers moving the
data to further improve system performance.

2) Replication: Especially in the context of grid com-
puting, several approaches use replication to optimize task
execution times [23]–[25]. Chervenak et al. [26] combine HT-
Condor’s [27] workflow management with a data placement
service. Since 2011, HTCondor integrates the Stork [28] data
scheduler that focuses on the matchmaking of code and data on
the provider side. However, it neither decides on the location of
the data nor performs any data placement before task runtime.
In [29], Nukarapu et al. present centralized and decentralized
versions of a greedy replication strategy that minimizes the
total delay to access input files for a given set of tasks.

3) Combining data placement and task scheduling: Similar
to our approach, several systems use both, strategic data
placement and task scheduling, to accelerate execution times.
Ranganathan and Foster understand data and task alloca-
tion as two independent processes [30]. Scheduling tasks on
providers that already store the input data in combination
with replication performed best in their evaluation. Desprez
and Vernois combine data management and scheduling with
a steady-state approach [31]. Assuming that data and tasks
are known in advance, their algorithm computes the optimal
data distribution. Tang et al. introduce an approach that
periodically updates data placement based on the usage in

the past [32]. In case of a task request, it schedules the
task on the resource with the shortest expected turnaround
time. Chakrabarti and Sengupta organize providers in virtual
clusters and optimize the current data distribution according to
demand, frequency of data access, and expected latency [33].
These approaches focus on rather homogeneous environments
and do not cover the characteristics of edge computing systems
such as fluctuation. Cameron et al. present three heuristics
to determine whether the provider should keep a replica of
the input data of a recently-finished task. Chang et al. also
first schedule tasks on suitable providers and then decide to
store the input data permanently or to delete it based on a
least frequency used (LFU) heuristic [34]. Both approaches
do not optimize data distribution before task runtime. Tang
et al. [35] propose a data-centric fog architecture that reduces
data transfer overhead and offers low latencies. However, it has
a fixed hierarchy and data flow. The Nebula architecture [36]
supports distributed data-intensive applications through a close
interaction between storage and compute resources in an edge
cloud scenario. Another edge computing approach by Li et
al. [37] includes an iterative task placement algorithm where
edge servers forward tasks to other edge servers that have the
required data. Similar to Nebula, the data placement is rather
static and does not provide adaptation at runtime.

III. AN ARCHITECTURE FOR DATA MANAGEMENT

In the following section, we first introduce the major
challenges of data and task allocation in edge environments.
Then, we introduce an architecture consisting of six different
components that is able to cope with these challenges. Finally,
we describe the design of our multi-level scheduler.

A. Challenges

Decoupling computation and data scheduling in grid envi-
ronments has been proposed by Ranganathan and Foster as
early as 2002 [30]. While the edge paradigm with no doubt
has its merits, it introduces new challenges for data and task
placement compared to grid computing. First, heterogeneity
in terms of hardware such as computation power, network
connection, or storage capabilities is typical for edge envi-
ronments [38]. Second, edge devices can leave the system
gracefully or without notice, leading to fluctuation. Whereas
some devices appear at regular intervals others might enter
the system sporadically or only just once. Large data files
should be transferred to appropriate devices. Edge computing
environments consist of a large number of devices with a high
bandwidth connectivity [39]. This benefits edge applications
that make use of these excess capacities. In contrast to
batch applications, tasks in edge environments require high
responsiveness. Sluggish data replication, queuing, and aborted
executions lead to unacceptable delays. Task scheduling deci-
sions cannot be made in a statical way but need to be done
dynamically upon task creation. Ideally, the data placement has
happened beforehand. The novel challenges of edge computing
require suitable data and task placement.
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Fig. 1. The architecture of the data management system. The system
runs decentralized on each resource. It communicates via the interfaces
application connector, local repository manager, and communication module
with applications, local file space, and distributed computing environment.
The core components scheduler, meta-data manager, and garbage collector
orchestrate the data management process.

B. System Architecture

Our system architecture is able to cope with these cir-
cumstances. Each entity in the edge environment runs an
own instance of the system. Depending on the architecture of
the distributed computing system that uses the data manage-
ment, some components may run on central instances such
as brokers only. This instance consists of six components
that interact with each other. Three of these components are
interfaces. The Application Connector communicates with the
distributed computing applications. It receives new data from
an application or forwards results. A second interface, the
Local Repository Manager, provides access to the local file
space. It stores data permanently, manages access to files, and
executes garbage collection. To transfer data to other resources
and to receive data, the Communication Module handles the
connection to the distributed computing environment.

The three interfaces offer essential features to the core
components which are responsible for orchestrating the data
management process. The scheduler places data strategically
in the system and allocates tasks to resource providers. To
make informed decisions, it is crucial to have an up-to-date
view on the distributed computing system. The meta-data
manager offers this view. It aggregates information about the
resources in the system, the data files that they store, and
further meta-data such as latencies. Similar to the scheduler,
the garbage collector also relies on the meta-data manager.
It conducts the garbage collection process, ideally in close
cooperation with the scheduler. Figure 1 shows the architecture
of the data management system with six components and the
interaction with three entities outside of the system.

C. Multi-Level Scheduler

In the following, we focus on the design of the scheduler
of the data management system. This component is of key
importance as it determines where to place data and tasks
strategically in the system. Hence, it influences the perfor-
mance of the overall distributed computing system substan-
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Fig. 2. Multi-level scheduler design for data placement prior to task execution,
task placement, and runtime adaptation. The modular design allows to
integrate various strategies on each level for particular contexts.

tially. We use an integrated scheduling approach that manages
both, data placement and task scheduling. This integration into
one scheduler leads to better optimization of the system state
and less overhead for negotiation between two independent
schedulers. In addition, the integrated design avoids oscilla-
tion effects, that occur if separated data and task schedulers
repeatedly counteract each other’s decisions. Figure 2 shows
the scheduler design in detail.

The multi-level scheduler includes a dispatcher component
that forwards incoming events to the appropriate level. If
a resource enters new data into the system, the dispatcher
triggers the data placement level. Before the actual runtime
of tasks, the data placement level decides whether to replicate
new data and where to place these replicas. To avoid additional
assumptions, our approach does not assume any knowledge
about the future workflow or dependencies between data and
certain tasks at this level. In case of a new task, the dispatcher
forwards the task request to the task scheduling level. This
level allocates tasks on the most suitable devices in the system.
Depending on the particular strategy and the data dependencies
of the task, the allocation may exploit the data distribution
created previously by the data placement level. An incoming
result of a computation or the (de-) registration of a device
is dispatched to the runtime adaptation level. As initial data
placement decisions can be ineffective, this level ensures the
adjustment of the data placement to the current system state
at runtime. For instance, if certain data is frequently used, the
placement of an additional replica may be beneficial.

The effectiveness of scheduling strategies depends highly
on the context. Strategies perform differently if network churn,
task complexity, or average data file size change. To consider
this and to allow for extensibility, each of the scheduler’s
levels contains different strategies. The scheduling algorithm
interface defines functions that all strategies need to provide.
Now, programmers can tailor new scheduling algorithms to
the respective distributed computing system and integrate them
easily. Additionally, this modular design improves adaptability.
A self-adaptive scheduler may choose from different schedul-
ing algorithms at runtime based on the current context.
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IV. DATA-CENTRIC SCHEDULING IN EDGE ENVIRONMENTS

This section presents the strategies integrated into each
level of the multi-level scheduler. The first level is the data
placement, which happens prior to the task execution. The
second level is the task scheduling level. The third level is
the runtime adaptation level, which uses a control loop for
self-adaptation to adjust the numbers of data replicas in the
system. Thus, we develop an overall scheduling strategy that
mitigates the impact of device heterogeneity in the first place
and reacts to bottlenecks during runtime.

A. Data Placement Level

The data placement level optimizes the distribution of new
data in the system by applying replication. Replication is the
management of various copies of the same data distributed on
different computers [40]. It leads to shorter turnaround times
of tasks at the cost of data management. Thus, the design
of a replication-based scheduling strategy needs to balance
the tradeoff between fast execution and data overhead. In
general, two extreme strategies exist: no replication and full
replication. However, between those two extreme strategies,
approaches exist which balance overhead and performance.
Next, we investigate three basic data placement strategies and
introduce our context-aware data placement strategy tailored
to edge computing environments, all summarized in Figure 3.

1) Basic Replication Strategies: In the no replication strat-
egy, the scheduler always couples data and code transfers. It
does not perform any data placement before task runtime.
Thus, the strategy optimizes initial data transfer overhead.
However, it leads to high task execution times as each execu-
tion will always include the latency for the data transmission.
In the case that data and tasks are simultaneously entered into
the system, this strategy is inevitably used as fallback.

With the 1-replication strategy, the data management system
places a single replica on a random provider before task
runtime. The initial data distribution costs are constant and
independent from the environment. Further, for periodic ex-
ecution of tasks, the replica can be reused without any data
transmission during task runtime. However, the 1-replication
strategy does not support concurrent executions on multiple
devices nor reliability in case of fluctuation.

The full replication strategy replicates all data objects on
all providers. If new data enters the system, data management
transfers it to all resources. This strategy minimizes the task
execution time. To achieve this, unnecessary data transfers will
happen as not all providers will execute all tasks.

2) Context-aware Replication: Different task characteris-
tics and system conditions influence the effectiveness of the
aforementioned generic replication strategies. To cope with the
dynamism of modern computing environments, we introduce
context-aware replication. This mechanism tunes the param-
eters of the replication strategy based on context information
gathered by the meta-data manager.

Context-aware replication encompasses two decisions for
each new data object d. First, it needs to determine the
number of replicas n. Second, the mechanism chooses the

No Replication 1-Replication

Full Replication Context-aware Replication

Fig. 3. The four data placement strategies that are integrated in the data
placement level. No replication does not place data prior to task executions.
The 1-replication strategy places a single data copy on a provider in the envi-
ronment. With full replication, all resources in the system hold a data replica.
The context-aware replication strategy decides on the level of replication and
the most suitable providers based on context information.

devices that will store the replicas. A separation of these
two steps ensures a reasonable number of replicas during
execution without relying on device monitoring or assuming
certain device characteristics. Concerning the first decision,
four context variables play a major role. The appropriate
number of replicas depends on the data size, the remaining
storage capacity of the system, the current fluctuation, and
the application. We model the current state of these four
variables with normalized coefficients ranging from 0 to 1. The
coefficient Cdata describes the relative data size by comparing
the absolute data size sd to the maximum allowed data size
in the system smax. In a system with k providers p1, ..., pk,
the coefficient for the remaining storage capacity, Ccap, is the
sum of the free storage cf of all devices divided by the sum
of the total storage ct of each device.

The influence of the current fluctuation on the desired
number of replicas is modeled in the coefficient Cflu. To
calculate this coefficient, we use a sliding window approach
and determine the mean residence times for each device that
has been part of the distributed computing system in this time
window. The average of these mean residence times quantifies
the current provider stability Stabprov in the system. However,
there is no linear relation between provider stability and the
appropriate number of replicas. A high number of replicas
is beneficial in systems with moderate stability values. In
unstable systems with high fluctuation, less replicas should be
chosen since replicas are likely to leave the system before any
task execution can happen on the device that stores the replica.
Additionally, systems with high stability values also require
less replicas. Devices barely leave the system which makes
having another copy of the data inefficient. To model this
non-linear relation, we apply a polynomial function as shown
in Figure 4. This function represents an example and can be
exchanged depending on system or application characteristics.

Moreover, the application characteristics influence replica-
tion. To incorporate these application-specific characteristics
into the replication decision, the coefficient Capp represents
whether the application might require a higher number of
replicas. The data placement level calculates this coefficient
as the average of the data availability factor fava and the

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

275



0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Stabprov in min

C
f
lu

Fig. 4. Function to determine Cflu based on the provider stability value.

parallelism factor fpar of the application that entered the data
into the system. Applications with a high data availability
factor benefit from having multiple replicas since they require
to continuously have an available copy on a provider to
ensure fast execution. A high parallelism factor models that
an application runs parallel tasks on the same data, which also
requires multiple replicas. These two factors, ranging from 0
to 1, may be transmitted to the data management system by
the application itself or observed by the meta-data manager
at runtime. The equations for calculating the three coefficients
Cdata, Ccap, and Capp are as follows:

Cdata =
sd
smax

;Ccap =

∑k
i=1 cfi∑k
i=1 cti

;Capp =
fava + fpar

2
(1)

The relative importance of the four context coefficients can
vary, depending on system and application state. Therefore,
we multiply weights α1 to α4 to the coefficients. The sum
of these weights further determines the maximum number of
replicas in the system. In edge environments, k, the number
of devices in the system, changes and does not necessarily
equal the norm size of the system that was used during design
time (k0). Hence, we scale the resulting number of replicas
depending on the relative size of the current system compared
to the norm size. The final equation to calculate the number
of replicas n then looks as follows:

n = (α1 ∗Cdata+α2 ∗Ccap+α3 ∗Cflu+α4 ∗Capp)∗
k

k0
(2)

The weights allow programmers to adjust the replication
strategy to the needs of their system. For instance, in systems
with large bandwidths that focus on fast execution of time-
critical tasks, α1 might be positive. With increasing data size,
the number of replicas also increases as migrating aborted
tasks becomes particularly costly. Systems with low bandwidth
or limited storage capacities may use a negative α1 to decrease
the data transfer overhead. A proper choice of the weights
is crucial for the effectiveness of the replication strategy.
Unsuitable weights may lead to unsatisfactory results such as
a constant shortage of replicas. Using a control structure that
adapts the weights dynamically at runtime can reduce the risk
of choosing unsuitable weights in the first place.

So far, we have considered context dimensions of the data
and the system itself to determine an adequate number of
replicas. For the decision on where to store the replicas, we
also take the characteristics of the providers into account. If
possible, replicas should be stored on devices that will not
leave the system until the data transfer was worthwhile. Thus,
the stability of the providers is an important context variable.
We already identified the influence of stability in another area
of application in our fault-avoidance approach [41]. Similar
to our prior work, we characterize the stability by considering
mean µp and variance σ2

p of the devices’ residence times. The
mean residence time is a relevant context dimension as it helps
to predict whether a resource remains connected for a longer
time on average. However, some devices may be connected for
a long time on average but still leave the system after a short
while in some cases. To consider this behavior in the decision,
we add the variance of the residence time as a context variable
to distinguish stable resources from unpredictable resources.
The meta-data manager estimates the values for µp and σ2

p

based on the past residence times of the resources in the
system. Further, it monitors the current residence time tp.

In addition, the storage load cp of the providers is a
relevant context variable. If a device faces a high storage
load, replicating additional data on this resource may not be
beneficial. Further, the scheduler also takes the data queue
sizes qp of the providers into account. Devices that store a large
amount of replicas will likely run a larger number of tasks in
the future. New replicas should be stored on devices that store
less data to avoid task queues and to allow a timely execution
of the associated task for this replica. Finally, the relative
performance index RPI of a device determines its compu-
tational performance compared to the average performance of
the current environment based on a benchmark measurement.
A provider with a high RPI stores more data replicas due to
the processing performance. Combining all of these context
variables into an equation to calculate a provider’s utility Up

leads to the following function:

Up = β1∗(µp−tp)+β2∗σ2
p+β3∗cp−β4∗qp+β5∗RPI (3)

Context-aware replication now places the new replicas on
the n providers with the highest utility value. Similar to
Equation 2, the different context variables are attached with
weights β1 to β5 to allow a customization of the function.
Since the choice of relevant context dimensions does not claim
to be exhaustive for all use cases, Equations 2 and 3 both allow
to integrate further context dimensions as addends if required.

B. Task Scheduling Level

After the data placement level has distributed data in the
system, the task scheduling level decides on the devices
for the task execution. Here, we present the scheduling
strategies random task scheduling, data-aware scheduling,
and performance-aware scheduling. All strategies allow to
parallelize tasks on multiple devices if desired. If no replica
is present on a provider or data and tasks entered the system
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Random Data-aware Performance-aware

Fig. 5. The three algorithms that are integrated in the task scheduling level
of the multi-level scheduler. The first strategy distributes task randomly, the
second strategy considers the current data placement, and the third algorithm
additionally considers the providers’ performance.

simultaneously, data is automatically coupled to the task. In
case of a device failure or a task abortion, the scheduler re-
allocates the whole task by applying the chosen strategy.

1) Random Task Scheduling: The random task scheduling
chooses resource providers without applying any contextual
knowledge. This algorithm does not take the data placement
into account. Thus, tasks are scheduled randomly which may
imply an additional data transfer, even if the data is present
on other providers in the system.

2) Data-aware Task Scheduling: The data-aware schedul-
ing strategy randomly picks a provider that has a local replica
of the required data. This may lead to task queues if only few
providers store a replica. If no provider stores a replica, the
scheduler allocates the task to a random provider and transfers
the required data together with the task.

3) Performance-aware Task Scheduling: With
performance-aware task scheduling, the scheduler allocates
tasks on the fastest idle device that holds a replica. To achieve
this, we compare the aforementioned relative performance
indices of all devices to determine the provider with the best
performance. In case that all devices are busy, the scheduler
randomly allocates the task on a provider with the required
replica, similar to data-aware scheduling. Again, this may
lead to task queues on resource providers.

C. Runtime Adaptation Level

The runtime adaptation level observes the system state
during the runtime of tasks. So far, the number of replicas
is not changed after the initial placement. Fluctuation implies
a decreasing amount of data replicas over time, which may
introduce execution latencies. As a solution, the scheduler
adjusts the data placement during runtime. Here, we im-
plemented the strategies static runtime adaptation, dynamic
runtime adaptation, and data caching.

1) Static: A first approach is to restore the amount of
replicas chosen by the initial data placement strategy. In
case of the 1-replication strategy, the runtime data placement
always keeps a single replica. When the provider that holds the
replica leaves the system, the runtime adaptation level allocates
a new replica. Analogously, this strategy restores the full and
context-aware replication in case of fluctuation.

2) Dynamic: The goal of the context-aware replication
strategy is to determine an appropriate number of replicas
and to store these replicas on most suitable providers. The
decision depends on multiple, constantly changing context
variables. To take context changes into account, the dynamic

No 
replication

Full 
replication

Optimal number 
of replicas

Context-aware 
replication

fluctuation queue avoidance

Fig. 6. The dynamic runtime adaptation approximates the optimal number of
data replicas step by step. In case of device fluctuation, the number of replicas
is decreased. If queues emerge, new replicas are placed in the system.

runtime adaptation identifies the current context and adjusts
the amount of replicas n. However, determining a suitable
value for n is both, crucial and complex. On the one hand,
if n is exaggerated, the overhead of managing the replicas
is increased. On the other hand, if n is understated, the
responsiveness of task executions decreases.

To approximate the number without a large amount of opti-
mization overhead, we apply a MAPE feedback loop from self-
adaptive systems to our approach [42]. The MAPE feedback
loop has four components, namely, monitoring, analyzing,
planning, and executing that realize different tasks in the
system: To measure the execution quality, we monitor the
queuing times of tasks relative to their execution time. The
system analyzes the queuing time measurements and verifies
if a threshold is exceeded. This triggers the creation of a new
replica. Now, the planning stage of the feedback loop uses
the utility function introduced in Equation 3 to determine
the most suitable resource provider. In the execution phase,
the data management system deploys a new replica on the
chosen resource provider. This feedback loop leads to a work
balancing among all providers with the same data.

With this algorithm, we increase the number of replicas if
required. However, too many replicas lead to data management
overhead. As a solution, the natural fluctuation of edge devices
decreases the number of replicas in the system. Thus, we
approximate the optimal n by applying our dynamic runtime
adaptation and relying on the natural fluctuation of edge
devices. Depending on the current data placement strategy, the
approximation to the optimal n may start with a 1-replication,
a full replication, or a context-aware replication.

3) Data Caching: With the caching strategy enabled, re-
source providers always store incoming data for further use
as local replica. When no initial replication strategy is active
and tasks and data are allocated together, this strategy reduces
the data transfer overhead. Each resource provider decides if it
has enough storage for an additional replica. In case of random
task scheduling, the data placement converges towards a full
replication over time. The strength of this effect depends on
the stability of the environment. Besides, the emerging data
placement is rather random and not based on any strategy,
which requires a sophisticated garbage collection mechanism.
Therefore, caching may introduce additional data management
overhead, depending on the current system context.
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µ
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σ
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3 x PC 7 7 2.5

2 x Laptop 10 4 2.7

3 x Phone (stable) 20 1.5 1

2 x Phone (unstable) 20 0.5 0.5

Application #
Tasks
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(in sec)

Data
(in MB)

Face Detection 243 4 120

Machine Learning 40 30, 60,
120,180

10, 15,
20, 25, 30

MC Simulation 20 300 5

Combined 303 -all- -all-

Fig. 7. The testbed used in the evaluation represents a typical office environment in the academic sector. Ten devices act as resource providers with different
characteristics concerning benchmark, mean residence time µ and standard deviation of the residence time σ. In the evaluation, this distributed computing
environment runs three workflows typical for applications in this area and a combined workflow with all applications in parallel.

V. EVALUATION

We evaluate our multi-level scheduling approach in a real-
world testbed. The usage of a real-world testbed allows to
show the practical feasibility of the approach. Moreover, en-
vironmental details and realistic characteristics of the network
layer influence the measurements. This comes at the cost
of less controllability and natural variances compared to a
simulator-based evaluation. After presenting our data man-
agement prototype, the experimental setup, and the evaluation
scenarios, this section summarizes the results of an evaluation
of the three levels of our scheduling approach.

A. Prototype

We implemented a prototype of our data management sys-
tem in Java. The implementation offers well-defined interfaces
that allow to integrate the data management system into
different distributed computing systems. In the evaluation,
we use our data management approach with the Tasklet
system, a middleware-based distributed computing system for
heterogeneous environments [43]. To avoid possible influences
of performance fluctuations or side effects of the external
middleware, we connected our prototype to a Tasklet system
emulator. This emulator shows equivalent behavior as the
Tasklet system but allows a more controlled and steady setup.

Tasklets are extracted application subroutines that are of-
floaded to remote resources in self-contained units. The Tasklet
system model includes three entities. In addition to resource
consumers and providers, certain nodes in the network act
as brokers. After registering at one broker, the consumers
submit task requests. The broker then schedules tasks and
orchestrates the workflow. The Tasklet system allows nodes to
be consumers and providers at the same time. Figure 8 shows
the system model of the Tasklet system [43]. To tailor the data
management system to the hybrid architecture of the Tasklet
system, we deployed the multi-level scheduler, the meta-data
manager, and the garbage collector centrally on the broker.

B. Experimental Setup
To deploy the prototype, we created a real-world testbed

consisting of eleven physical devices. One of the devices acts
as the consumer and hosts the broker. The other ten devices
are resource providers. To exclude hardware influences, we
used homogeneous devices and configured them to have the
characteristics of desktop PCs, laptops, and smartphones in
terms of computational performance and fluctuation. Now,
the setup resembles an office environment in the academic
sector with three office rooms and a student lab depicted in
Figure 7. Leaving devices delete all of their data and re-
enter the system after a randomly chosen time interval. In
this setup, we run three applications separately for 60 minutes
for each possible combination of data placement strategy, task
scheduling strategy, and runtime adaptation mechanism. Ad-
ditionally, we combine them in a fourth 60-minutes-workflow
to model a simultaneous execution of all three applications.
The workflows contain between 20 and 303 Tasklet executions
each. In total, the evaluation time amounted to 48 hours.
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Fig. 8. The Tasklet system model. In addition to resource consumers and
providers, central brokers exist that schedule remote computations. Providers
run Tasklet Virtual Machines (TVMs) to execute Tasklets.

To compare the performance of the strategies, we measure
the Tasklet turnaround time, the queuing time, the execution
time, and the data transfer overhead. The queuing time quan-
tifies the time span between the arrival of the Tasklet at the
provider and the execution start.
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Fig. 9. The initial data transfer overhead for creating a 1-replication, a full
replication, and a context-aware replication in comparison to the overhead of
transferring the data coupled with the tasks.

C. Scenarios

We run the prototype with three different applications of
varying data and computational intensity in the academic office
environment. First, a face recognition workflow consists of
events that occur if cameras at the entrance of the office
building use face recognition to grant access. Face recognition
compares the current camera image to entries of a compara-
tively large database file. Second, a researcher in office 2 tests
different machine learning algorithms on multiple input files
of varying sizes. Third, students in the computer lab perform
computationally intensive simulations on comparatively small
input files. A poisson point process is used to generate realistic
timing of task events in these workflows. To enhance com-
parability of data-centric scheduling strategies and to avoid
unintended variations in the execution of the Tasklets, the
prototype uses emulated Tasklets with fixed complexities.

D. Data Placement Level

The data placement level optimizes the data distribution be-
fore task runtime. This initial placement leads to an additional
data transfer overhead. Figure 9 shows the total amount of
data shipped from the consumer to the providers for each data
placement strategy in the scenario when all three applications
run in parallel. It becomes visible that the full replication
strategy, which is most promising from a runtime perspective,
also leads to high data transfer overhead in the pre-execution
phase. In case of data-aware scheduling and deactivated run-
time adaptation, no data transfers occur during runtime for
1-replication, full replication, and context-aware replication.
Contrary, the no replication strategy does not require initial
data transfers but leads to a considerable amount of transferred
data during runtime. Since the number of tasks is higher than
the number of providers, coupling data and tasks in the no
replication strategy is considerably more costly in terms of
data transfer compared to any other strategy.

E. Task Scheduling Level

After having distributed the data in the system according to
the data placement strategy, the task scheduling level allocates
task to resources. First, we apply the random task scheduling
strategy as a baseline. Figure 10 depicts the average Tasklet
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Fig. 10. The average turnaround times for each of the four data placement
strategies if random task scheduling is applied. Runtime adaptation is disabled.

turnaround times for each of the four data placement strategies.
As expected, a full replication strategy performs best in this
setting. Since all providers already store the data, no data
transfers are necessary and turnaround times only consist of
queuing time and execution time. No replication, 1-replication,
and context-aware replication perform substantially worse.

Now, we use data-aware task scheduling instead of random
scheduling. This strategy exploits the distribution of replicas
created by the data placement level. Figure 11 shows the aver-
age turnaround times for the combined workflow. Data-aware
scheduling is only applicable to 1-replication and context-
aware replication. Compared to random task scheduling, a
data-aware strategy reduces the turnaround times by 56.4 %
for context-aware replication. The considerable improvement
indicates that it is highly beneficial to apply a data-centric
task scheduling strategy if and only if the data placement level
already optimized data placement in advance. However, when
using the 1-replication strategy, a data-aware task scheduling
strategy substantially extends turnaround times. All tasks are
scheduled on the single device which leads to tasks queues.

612

119103

33 29

0

100

200

300

400

500

600

Data-aware Perf.-aware

a
v
er

a
ge

 r
u
n
ti

m
e 

in
 s

ec
o
n
d
s

1-Rep.

CA Rep.

Full Rep.

Fig. 11. Tasklet turnaround times for the different data placement strategies
combined with data-aware and performance-aware task scheduling.

As a third option, we apply performance-aware task
scheduling. When using context-aware replication, this further
decreases the Tasklet turnaround times by 68.3 % compared to
data-aware task scheduling with the same placement strategy.
As depicted in Figure 11, the combination of context-aware
data replication and performance-aware task scheduling now
reaches a similar system performance as the runtime-optimal
combination of a constant full replication and performance-
aware task scheduling. Average turnaround times are 32.7
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Fig. 12. Turnaround times, queuing times, and data transfer overhead for the different data placement strategies if each of the three applications runs separately
in the environment. Placement strategies are combined with performance-aware task scheduling and dynamic runtime adaptation when applicable.

seconds compared to 28.8 seconds in a full replication. Thus,
the context-aware replication together with appropriate task
allocation can be comparably as effective as a full replication
while requiring a substantially lower data transfer overhead
even without any runtime adaptation.

F. Runtime Adaptation Level

To further improve the performance, we now also activate
runtime adaptation. When used with context-aware replica-
tion and performance-aware task scheduling, dynamic runtime
adaptation minimizes turnaround times by another 10.2 %
to 29.4 seconds. Hence, the top-performing combination of
context-aware replication, performance-aware task scheduling,
and dynamic runtime adaptation leads to runtimes comparable
to a constant full replication while reducing data overhead.

G. Applications Spotlight

The effectiveness of data placement and task scheduling
strategies is highly dependent on the nature of the current
workflow. To investigate the effect of application characteris-
tics, we evaluate our data placement strategies for each appli-
cation separately. Figure 12 presents the average turnaround
times, queuing times, and data transfer overhead. If possible,
our data placement strategies are combined with performance-
aware task scheduling and dynamic runtime adaptation. The
face recognition application is highly data-intensive while
requiring only short computations. Here, task queues only
emerge in the no replication strategy due to the high data
transfer overhead during runtime. However, the 1-replication
strategy is still considerably slower than context-aware and
full replication as a slower device stores the only replica.

The machine learning use case relies on smaller input files
than the face database in the first application but is more
computationally intensive. If this application runs isolated,
large task queues emerge on the devices that store the only
replica in the 1-replication strategy. In this case, even the
no replication strategy performs better. Similar to the face
recognition use case, context-aware replication is again able
to meet the performance of a full replication while requiring
only 35.7 % of the data transfer overhead.

The third use case is the execution of a simulation. This
application runs complex computations with small input data.
Again, context-aware replication performs as well as full
replication. Together with performance-aware task scheduling
and dynamic runtime adaptation, the strategy is able to keep
queuing times at a low level. Thus, it is as fast as a full replica-
tion while leading to considerably less data transfer overhead.
The 1-replication strategy, however, fails to eliminate task
queues even though it uses dynamic runtime adaptation. The
reason for this behavior is that the initial distribution of the
data is too narrow for performance-aware task scheduling and
that the dynamic adaptation is not able to cope with the long
queues which evolve after a short time. Here, a solution would
be to re-configure the dynamic runtime adaptation to create
more replicas at once and to be less conservative in scenarios
with low data intensity.

VI. CONCLUSION

In this paper, we introduced a data management approach
for distributed computing in edge environments. We proposed
a multi-level scheduler that places data strategically in the
system based on the current context, schedules tasks accord-
ingly, and adapts data placement at runtime. A prototype
of the system tailored to the Tasklet system was evaluated
in a real-world testbed. We investigated the effectiveness of
our proposed algorithms. The results show that a context-
aware replication strategy together with performance-aware
task scheduling and dynamic runtime adaptation performs
best. It leads to task turnaround times comparable to a full
replication while requiring less data overhead.

For future work, we plan to integrate the data manage-
ment architecture into the Tasklet simulator to evaluate the
approach on a larger scale. Further, we want to extend the data
placement level of our scheduler and incorporate more context
dimensions such as network topology or user preferences.
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[18] H. Liu, A. Abraham, V. Snášel, and S. McLoone, “Swarm schedul-
ing approaches for work-flow applications with security constraints in
distributed data-intensive computing environments,” Inf. Sci. (Ny)., vol.
192, pp. 228–243, 2012.

[19] J. Taheri, Y. Choon Lee, A. Y. Zomaya, and H. J. Siegel, “A Bee Colony
based optimization approach for simultaneous job scheduling and data
replication in grid environments,” Comput. Oper. Res., vol. 40, no. 6,
pp. 1564–1578, 2013.

[20] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, “A balanced
scheduler with data reuse and replication for scientific workflows in
cloud computing systems,” Futur. Gener. Comput. Syst., vol. 74, pp.
168–178, 2017.

[21] X. Li, T. Jiang, and R. Ruiz, “Heuristics for periodical batch job
scheduling in a MapReduce computing framework,” Inf. Sci. (Ny)., vol.
326, pp. 119–133, 2016.

[22] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive Edge Computing
in Latency-Constrained Fog Networks,” in Proc. EuCNC. IEEE, 2017,
pp. 1–6.

[23] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke,
“Data Management and Transfer in High-Performance Computational
Grid Environments,” Parallel Comput., vol. 28, no. 5, pp. 749–771, 2002.

[24] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger,
and F. Zini, “Simulation of Dynamic Grid Replication Strategies in
OptorSim,” Int. J. High Perform. Comput. Appl., vol. 17, no. 4, pp.
403–416, 2002.

[25] S. Venugopal, R. Buyya, and L. Winton, “A Grid service broker for
scheduling e-Science applications on global data,” Concurr. Comput.
Pract. Exp., vol. 18, pp. 685–699, 2006.

[26] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi,
G. Mehta, and K. Vahi, “Data Placement for Scientific Applications in
Distributed Environments,” in Proc. GRID. IEEE, 2007, pp. 267–274.

[27] D. Thain, T. Tannenbaum, and L. Miron, “Distributed Computing
in Practive: The Condor Experience,” Concurr. Comput. Pract. Exp.,
vol. 17, no. 2, pp. 325–356, 2005.

[28] T. Kosar and M. Balman, “A new paradigm: Data-aware scheduling in
grid computing,” Futur. Gener. Comput. Syst., vol. 25, no. 4, pp. 406–
413, 2009.

[29] D. T. Nukarapu, B. Tang, L. Wang, and S. Lu, “Data Replication in Data
Intensive Scientific Applications with Performance Guarantee,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1299–1306, 2011.

[30] K. Ranganathan and I. Foster, “Decoupling Computation and Data
Scheduling in Distributed Data-Intensive Applications,” in Proc. HPDC.
IEEE, 2002, pp. 352–358.

[31] F. Desprez and A. Vernois, “Simultaneous Scheduling of Replication
and Computation for Data-Intensive Applications on the Grid,” J. Grid
Comput., vol. 4, no. 1, pp. 19–33, 2006.

[32] M. Tang, B. S. Lee, X. Tang, and C. K. Yeo, “The impact of data
replication on job scheduling performance in the Data Grid,” Futur.
Gener. Comput. Syst., vol. 22, pp. 254–268, 2006.

[33] A. Chakrabarti and S. Sengupta, “Scalable and Distributed Mechanisms
for Integrated Scheduling and Replication in Data Grids,” in Proc.
ICDCN. Springer, 2008, pp. 227–238.

[34] R.-S. Chang, J.-S. Chang, and S.-Y. Lin, “Job scheduling and data
replication on data grids,” Futur. Gener. Comput. Syst., vol. 23, pp. 846–
860, 2007.

[35] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, and Q. Yang,
“Incorporating Intelligence in Fog Computing for Big Data Analysis in
Smart Cities,” IEEE Trans. Ind. Informatics, vol. 13, no. 5, pp. 2140–
2150, 2017.

[36] A. Jonathan, M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula:
Distributed Edge Cloud for Data Intensive Computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 11, pp. 3229–3242, 2017.

[37] Y. Li, J. Luo, J. Jin, R. Xiong, and F. Dong, “An Effective Model for
Edge-Side Collaborative Storage in Data-Intensive Edge Computing,” in
Proc. CSCWD. IEEE, 2018, pp. 535–540.

[38] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling Remote Computing Among Intermittently Connected Mobile
Devices,” in Proc. MobiHoc. ACM, 2012, pp. 145–154.

[39] M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed
edge cloud for data-intensive computing,” in Proc. CTS. IEEE, 2014,
pp. 491–492.

[40] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design, 4th ed. Addison-Wesley, 2005.
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