
Extreme SDN Framework for IoT and Mobile
Applications Flexible Privacy at the Edge

Mostafa Uddin
Nokia Bell Labs

Holmdel, NJ, USA
mostafa.uddin@nokia-bell-labs.com

Tamer Nadeem, Santosh Nukavarapu
Virginia Commonwealth University

Richmond, VA, USA
{tnadeem,nukavarapuskk}@vcu.edu

Abstract—With the current significant penetration of mobile
devices (i.e. smartphones and tablets) and the tremendous in-
crease in the number of the corresponding mobile applications,
they have become an indispensable part of our lives. Nowadays,
there is a significant growth in the number of sensitive appli-
cations such as personal health applications, personal financial
applications, home monitoring applications, etc. In addition,
with the significant growth of Internet-of-Things (IoT) devices,
smartphones and the corresponding applications are widely
considered as the Internet gateways for these devices. Mobile
devices mostly use wireless LANs (WLANs) (i.e., WiFi networks)
as the prominent network interface to the Internet. However,
due to the broadcast nature of WiFi links, wireless traffics
are exposed to any eavesdropping adversary within the WLAN.
Despite WiFi encryption, studies show that application usage
information could be inferred from the encrypted wireless traffic.
The leakage of this sensitive information is very serious issue
that will significantly impact users’ privacy and security. In
addressing this privacy concern, we design and develop a light-
weight programmable privacy framework, called PrivacyGuard.
PrivacyGuard is inspired by the vision of pushing the Software
Defined Network (SDN)-like paradigm all the way to wireless
network edge, is designed to support of adopting privacy pre-
serving policies to protect the wireless communication of the
sensitive applications. In this paper, we demonstrate and evaluate
a prototype of PrivacyGuard framework on Android devices
showing the flexibility and efficiency of the framework.

Index Terms—mobile device, IoT, software defined network,
privacy, edge, traffic shaping

I. INTRODUCTION

We are approaching a fundamental shift in the computa-
tional era as the number of smart device users (e.g., smart-
phone and tablet users) is expected to exceed 6 billion (more
than 50% of the global population) by 2020 [19]. This is
supplemented by IoT devices which are transforming the way
of living for smart environment users by enabling them with
various services. Ericsson predicts the number of connected
IoT devices to reach 18 billion by 2022 [13]. Smartphones (and
mobile devices in general) are widely considered as Internet
gateways to IoT devices through using the corresponding IoT
applications on smartphones. These IoT devices, as well as
smartphones, sense and monitor several sensitive user infor-
mation including sleeping patterns [1], exercise routines [12],

This material is based upon work partially supported by the US National
Science Foundation under Grants No. CNS-1764185 & CNS-1836870.

0

50

100

150

200

250

0.0 0.5 1.0 1.3

By
tes

/se
c

Time (sec)

Heart-rate
smart-plug

flux-1
flux-2

(a)

0

15

30

45

0.0 0.5 1.0 1.3

By
tes

/se
c

Time (sec)

flux-1
flux-2

(b)
Fig. 1. a) Traffic patterns of four different IoT devices: Heart-rate monitoring,
Elegato-plug, and two Flux-lightbulb devices operating at different times.
b) Zooming into the traffic of the two Flux-lightbulb devices shows high
similarity.

child behaviors [15], medical information [23], sexual activ-
ity [43], and home appliances status [22].

Mobile devices mostly use wireless LANs (WLANs) (i.e.,
WiFi networks) as the prominent network interface to the
Internet. A recent study found that WiFi networks are expected
to carry almost 60% of smartphones and tablets data traffic
by 2019 [20]. The broadcasting nature of WiFi exposes IoT
and smart devices traffic to eavesdropping by adversaries and,
consequently, various attacks. Several previous studies already
showed that, even with WiFi encryption (e.g., WPA2), statisti-
cal analysis of side-channel information of WiFi traffic such as
packet sizes, data rate, ratio of incoming to outgoing packets,
inter-packet time, etc. could infer several user-related informa-
tion such as user identity [29], user’s online activities [46], and
identification of applications used by the user [40]. The traffic
analysis of major commercial IoT devices like Nest Camera,
Amazon Echo (Personal Voice Assistant), Belkin Smart Plug is
found vulnerable to activity inference such as user presence,
device interaction and appliance usage [7]. As an example,
Figure 1a captures the WiFi traffic of four mobile applications
corresponding to four IoT devices, while Figure 1b zooms on
the traffic of the same-type devices. As shown, while the traffic
patterns of the two Flux bulbs look very similar, different IoT
devices have different traffic patterns that could be uniquely
distinguished and easily correlated to its corresponding IoT
device and even to a specific activity/status of the IoT device.

In addressing the above security concern of side-channel
analysis, several techniques like perfect secrecy theory [32],
mix based systems and anonymous systems [16] are proposed
to hide traffic signatures and characteristics in order to make
them less identifiable. The most popular techniques are based

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5386-9148-9/19/$31.00 ©2019 IEEE 292



on traffic shaping like traffic padding [8], [11], [26], [30], [36],
faking superfluous packet and chopping packets into fixed size
segments [8], and traffic morphing [8], [42]. The performance
of these traffic shaping techniques in terms of efficiency and
overhead varies based on their configuration parameters. For
example, the efficiency of the traffic padding approach in
obfuscating the traffic signature, as shown later in experiments,
increases with the percentage of the padded traffic packets.
However, this higher efficiency comes with higher overhead
in terms of network bandwidth and power consumption since
more bits are transmitted. For example, while a padding
configuration providing high obfuscation efficiency with high
overhead is suitable for networks with low traffic loads, it
significantly degrades the performance of a highly saturated
networks and, consequently, switching to a lower overhead
configuration would be more desirable.

Motivated by the above observations, in this paper, we
design, develop and evaluate a flexible and programmable pri-
vacy preserving framework, PrivacyGuard that is inspired by
our vision of pushing the Software Defined Network (SDN)-
like paradigm all the way to the wireless network edge [24],
[39]. This vision is realized by extending and deploying
SDN components (e.g., Open vSwitch [4]) on mobile devices
and WiFi Access Points (in home or campus environments)
or Proxy server (in open and public WiFi Hotspots). We
refer to these SDN components on mobile end devices and
access points as extreme SDN1 to differentiate them from the
traditional SDN used in the network core. In our approach,
the proposed extreme SDN works independently and without
any collaboration or support from the network core SDN. The
basic idea of PrivacyGuard framework is to create one or
more vertical network slicing between mobile devices and
WiFi APs/Proxy server corresponding to one or more rules
(policies), which applies the optimum per-flow/per-application
privacy preserving scheme based on application requirements,
user objectives, device characteristics, and network conditions
in real-time fashion.

We summarize the contributions of this paper as follows:

• We design and develop PrivacyGuard, a privacy pre-
serving framework to obfuscate the activities of sensitive
IoT and mobile applications from adversarial attack over
encrypted (or unencrypted) WiFi network. The frame-
work supports important features such as flexibility, trans-
parency, real-time adaptability, and context-awareness.

• We realize and implement a prototype of PrivacyGuard
on Android mobile devices that enable us to apply per-
application traffic shaping and IPsec tunneling schemes.

• Finally, we evaluate and analyze the performance of Pri-
vacyGuard using different applications on mobile devices
to evaluate its efficiency, energy consumption, network
overhead, and CPU usage.

1Recently, ”extreme” has been adopted in networking and mobile comput-
ing community to refer to network edge devices such as wireless access points
or user devices [9] in which we adopt this definition in this paper.

II. THREAT MODEL AND APPLICATIONS/FLOWS
IDENTIFICATION

In this paper, we consider the privacy threat model where
the adversary passively eavesdrops the encrypted/unencrypted
wireless traffic between the mobile devices and the WiFi
Access Points (APs). In IoT context, the mobile devices
act as gateways for the IoT devices that utilizes non- WiFi
technologies, such as Bluetooth Low Energy (BLE) or Z-
wave, to communicate with their corresponding applications
on the mobile devices. By eavesdropping, the adversary can
extract and analyze the WiFi side-channel information such
as packet sizes and inter-arrival packet times to identify
the running mobile applications and the corresponding usage
activities [40].

In this work, we refer to these applications as the sensitive
applications in which the goal of the adversary is to identify
the usage of these sensitive applications (e.g., mHealth apps,
IoT apps, etc.) to infer user’s information. The usage activities
of different mobile applications could be utilized for inferring
users’ identities [35], [44], knowing their health conditions,
tracking their daily activities, etc. For example, by eavesdrop-
ping the WiFi traffic of house members, the adversary will be
able to correlate the detected application activities to different
members of the house (e.g., husband, wife, kid), monitor their
different activities (e.g., using coffee machine, watching TV,
etc.), and track the occupancy periods of each member. This
example demonstrates that tracking mobile application usages
of individuals is not just a privacy issue, but also could be a
severe threat to the individual safety.

Previous studies show that any identification scheme based
on the side-channel information (e.g., packet sizes, number
of packets, inter-arrival packet times) is more reliable and
accurate in identifying the running applications than any of the
traffic packet values (e.g., IP Src address, port number, proto-
col type) [37], [38], [40]. Therefore, in our attack model (i.e.,
side-channel attack), we assume that the adversary doesn’t
need to access any of the packet fields and performs the attack
solely based on the traffic side-information, which applies to
both the encrypted and the unencrypted WiFi traffic.

While the side-channel attack seems to be challenging in
the presence of the overlapped encrypted traffic from multiple
applications running concurrently, previous works proposed
various approaches to efficiently classify and separate the
encrypted overlapping traffic into individual applications and
then apply the side-channel attack on each class to fingerprint
and identify individual applications [37], [38]. Moreover,
recent works show that IoT devices and corresponding ap-
plications generate short bursts of traffic frequently [6], [34],
which make it vulnerable to side-channel attack since it is
not hard to separate these bursts even when multiple IoT
devices/applications are running concurrently.

Different activities of an application will generate different
flows with different traffic characteristics that would require
different obfuscation handling. For example, a Nest Camera
will have two different flows corresponding to the live camera

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

293



feed and the motion detection activities respectively [7]. There-
fore, to launch an efficient side-channel attack, the adversary
needs to build a signature identification model for each mobile
application and its different corresponding flows. Typically,
the signatures of the different flows of an application will
be built offline by extracting the side-channel information
under both encrypted and unencrypted WiFi traffic. Zhang et
al. [46] show how to leverage various machine learning (ML)
techniques, such as Support Vector Machine (SVM), Neural
Network, and Hidden Markov Model, to build application’s
signatures by using the statistical characteristics of the side-
channel information. In this paper, we assume no bound on
the adversary’s ability to build such ML identification model
off-line.

In this paper, based on our previous work [39], we offline
build a C5.0 decision tree and a k-NN (k=3) classifiers based
on the statistical features of the side-channel information for
identifying the active applications and their corresponding
flows in real-time. Two different sets of features are used
for these two classifiers. The first set of features is based on
the sizes of the first N packets (i.e., N=7) and is used by
the C5.0 decision tree classifier to identify and recognize the
different applications. On the other hand, the K-NN classifier
is used to classify the WiFi traffic into its corresponding
applications/flows by using the second set of features that in-
cludes means, medians, minimums, maximums, and variances
of both packet sizes and inter-packet times (IPT) calculated
every two seconds window, as well as, the Discrete Wavelet
Transform coefficients calculated over the packet size and IPT
sequences. Both classifiers show more than 90% accuracy in
identifying the applications and their corresponding flows [39].
In this work, we assume the adversary uses these classifiers
to identify the active applications/flows. In addition, we use
these classifiers in our experiments to evaluate the efficiency
of the used obfuscation schemes.

III. PRIVACYGUARD FRAMEWORK

A. PrivacyGuard Objectives

In considering the above threat model, we design Privacy-
Guard with the following objectives.

Flexible per-application per-flow privacy preserving
schemes: Given different applications have different sen-
sitivities and requirements, PrivacyGuard should have the
flexibility of applying different privacy preserving schemes
to different applications. Moreover, different applications and
even different flows of the same application would have dif-
ferent traffic characteristics and, consequently, would require
different schemes to obfuscate the application. For example,
Dropbox generates two flows for uploading/downloading a file,
wherein one direction data packets are at its maximum possible
size, while the other direction contains just identical TCP ACK
packets. Therefore, the TCP ACK flow should use a scheme
that pads these TCP frames to look like the data packets
flow, which might not need any padding scheme. Therefore,
PrivacyGuard should be designed, through introducing new
action commands in Open vSwitch (OVS), as we will describe

later, to support applying per-application per-flow configurable
schemes.

Programmable privacy preserving policies: Given the
performance of privacy preserving schemes (e.g., traffic shap-
ing schemes) depends on their configuration, PrivacyGuard
should support programmable APIs to define and configure
different schemes dynamically. In addition, it also should
support to define set of rules (policies) that map individual
applications/flows to their optimum schemes based on on
the application, user, device, and network conditions and
characteristics in real-time fashion.

Context aware privacy preserving policies: Different ap-
plication requirements, user objectives, device characteristics,
and network conditions, which we refer to them as contexts,
require different performance levels of the applied privacy
preserving schemes. Therefore, PrivacyGuard should support
to integrate the context into the defined policies in order
to select in real-time the optimum scheme for individual
applications/flows that adapt to the given context.

Policies are transparent to applications: Unlike previous
systems that often require redesigning both the client side
and the server side of the application PrivacyGuard should
seamlessly support any application without requiring any
modification on either client or server-side of the application.

B. Privacy Preserving Schemes

PrivacyGuard adopts and utilizes a number of the popular
traffic shaping schemes, due to its popularity and simplicity,
to obfuscate applications traffic signatures from any adversary.

One of the adopted traffic shaping schemes is packet-
padding that applies a padding bytes to a percentage p of
the application traffic packets. Although the selection of these
padded packets could follow different distributions, in this
paper we select these packets uniformly in which each packet
of the traffic will be padded with a certain probability p. The
size of the padding bytes will follow a random distribution
such as Poisson distribution or Gaussian distribution. Note
that the actual padding size will depend on the configuration
parameters of the distribution. For example, if we set the stan-
dard deviation σ and the mean µ parameters of the Gaussian
distribution to a very small value and a large value respectively,
the outcome padding sizes will follow a large uniform padding
distribution. To guarantee that none of the padded packets
exceed the maximum transmission unit (MTU), we truncate
the outcome padding sizes as needed.

Another popular traffic shaping technique is packet-delaying
that shapes the inter-packet transmission times (IPTs). In
doing this, we increase the queueing time of each packet,
before sending it down to the WiFi driver, with a random
delay selected from a uniform distribution. Similar to packet-
padding scheme, packet-delaying scheme could follow any
other distribution.

Recent studies show that over half of the connections made
by mobile applications are insecure since they don’t use any of
the network or application level encryption [14]. Consequently,
open or unencrypted WiFi hotspot connections expose several

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

294



data packet fields such as “IP” header in which the adversary
could easily identify the applications/flows from these packets
even when we are using any of the privacy preserving schemes.
In mitigating this vulnerability, PrivacyGuard applies IPSec
tunneling scheme between the PrivacyGuard’s ends as de-
scribed in Section III-D, on top of any used traffic shaping
scheme, to prevent eavesdropping any of the packet fields. The
choice of using tunneling is entirely configurable and would
be selectively applied for selected applications based on the
network condition (i.e., WiFi is either open or unencrypted).

Although the current implementation of PrivacyGuard
adopts the traffic shaping and IPSec tunneling techniques
discussed above as a proof of concept of privacy preserving
schemes, PrivacyGuard is a flexible framework that easily
could be extended to support several other privacy preserving
schemes such as injecting fake superfluous packets, chopping
packets into fixed-size segments, traffic morphing, etc. More-
over, PrivacyGuard enables, through defining flow policies as
described later, to configure the applied privacy preserving to
adapt its performance to the current context.

C. Context Information

Different privacy preserving schemes with different con-
figurations would have different performance in terms of
obfuscation efficiency, network bandwidth overhead, power
consumption, and latency overhead. Therefore, a well-suited
scheme that should be applied is the one that its performance
suites multiple contexts, which we categorize as follows:

Application Context: Applications and corresponding
flows could be categorized into different sensitive classes (e.g.,
non-sensitive, moderate sensitive, high sensitive). Different
privacy schemes should be selected for different sensitive
classes. For example, high sensitive applications that reveal,
for example, sexual and medical activities should use high ef-
ficient obfuscation scheme despite the accompanied high over-
head. On the other hand, non-sensitive or moderate sensitive
applications should not apply any scheme or use low efficient
scheme in order to reduce or eliminate any overhead. Similarly,
applications could be classified into real-time and non-real-
time applications in which real-time application should not
use any significant delay-based privacy scheme.

User Context: User location and time are examples of user
context in which different policies could be defined based on
user context. For instance, a user’s home could be classified
as a secure environment in which a low efficient privacy
scheme will be applied to any high sensitive application. On
the other hand, a high efficient scheme will be used on both
the moderate and the high sensitive applications when the
user is sitting in his regular coffee-shop, which is defined
as an insecure environment. Similarly, a user could define
sensitive and non-sensitive time periods in order to hide certain
time-based activity. For example, an early morning time could
reveal sensitive routines such as medical activity (e.g., daily
morning drug dosage) while a nighttime could reveal sleeping
or sexual routines. Hence, a high efficient scheme will be
selected for these morning and evening sensitive time periods.

Sensitive apps

Mobile Devices

Wi-Fi AP       /     Proxy Server
                     (unencrypted WI-Fi) 

PrivacyGuard
     (Infrastructure Agent)

PrivacyGuard
(Client Agent) 

non-sensitive apps

 Secure traffic shaping communication

 Regular communication

Fig. 2. Use-case scenarios of PrivacyGuard.

Device Context: Examples of device context are battery
level and computing power. For example, while the battery
level of a device is high, it would be more suitable to apply a
high efficient scheme on both its moderate and high sensitive
applications. However, when the battery level of a device
drops below a certain threshold, it should switch to a low
power consumption and less efficient scheme for its high
sensitive applications only in order to preserve its battery
level. Similarly, a powerful mobile device would choose a
compute-intensive policy to guarantee strong privacy for all
its applications.

Network Context: Network conditions will significantly
impact the scheme selection. A public unencrypted WiFi hot-
spot such as a coffee shop or a train station would require to
use IPSec scheme on top of any other scheme on all moderate
and high sensitive applications. Similarly, if a network experi-
ences a high-load traffic, privacy preserving schemes with low
network bandwidth overhead would be preferable in order to
avoid any degradation in network performance.

D. PrivacyGuard Basic Operation

Figure 2 shows a typical use case of PrivacyGuard, which
consists of two edge agents i) Client Agent, and ii) Infras-
tructure Agent that run at two different ends as shown. The
client agent always runs on the user’s mobile devices with
system-level permission. However, the place of running the
infrastructure agent depends on the configuration ability of
the WiFi APs. In environments, where it is a common practice
to manage and configure the WiFi APs (i.e., home, campus,
office, etc.), infrastructure agent runs on the APs. On the other
hand, where it is less common to manage and configure the
WiFi APs (i.e., public hotspots, coffee shop, airport, etc.),
infrastructure agent runs as a proxy server in the cloud.
Note that running these agents on edge devices is similar
to the Bring-Your-Own-Device (BYOD) model that is widely
widely accepted by the community. Moreover, the community
has accepted several works recently to adopt SDN on WiFi
APs [28] and mobile devices [10], [24].

In PrivacyGuard, both of these agents agree on the traf-
fic shaping policies per-application per-flow as well as the
symmetric keys for IPsec tunneling between the two agents.
While the client agent applies traffic shaping policies on
the uplink network flows generated from the mobile devices,
the infrastructure agent applies traffic shaping policies on
the downlink network flows to the mobile devices. Note

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

295



Kernel

User
Space

User app /
 Policy Controller

User app /
 Policy Controller

OVS Datapath

Client Agent / Infrastructure Agent

User-space policy engineUser-space policy engine

AppsApps

TCP/IPTCP/IP

Kernel space 
Policy engine
Kernel space 
Policy engine

Upcall / netlink communication

XFRM
(IPSec)
XFRM
(IPSec) IP/RoutingIP/Routing

NIC Drive

OVS user-space

IKEv2
Daemon
IKEv2

Daemon

vp
or

t-
ip

se
vport-internal

Network flows
Control communication

OpenFlow APIs

Fig. 3. Architecture overview of PrivacyGuard for mobile devices.

that, PrivacyGuard only applies policies on the selected set
of sensitive mobile applications provided by the user. In
PrivacyGuard, both agents utilize Open vSwitch (OVS) to set
and enforce traffic shaping policies correctly on the network
flows from/to sensitive mobile applications as we describe in
the next section. It is important to highlight that PrivacyGuard
is entirely transparent to applications and networks in which
it can be seamlessly deployed into any network configuration
without requiring any support from application providers.

IV. PrivacyGuard SYSTEM ARCHITECTURE

Figure 3 shows the overall architecture of PrivacyGuard
for its client and infrastructure agents. Both agents have
some common modules in design such as user policy engine
and kernel-space policy engine modules as well as other
modules that are specific to each agent type. In the following
subsections we discuss each of these modules.

A. User-app Module

This module is a part of the client agent only that supports
several essential functions. One of its main functions is to
provide a user interface in which users could categorize the
installed applications into different sensitive classes. In addi-
tion, users utilize this interface to define the privacy preserving
schemes for individual applications/flows or applications of
similar sensitivity under different contexts.

Another function of this module is to track any new flow
and map it to its corresponding application. A ’flow’ is defined
as the packets with the same 5-tuple fields in the IP header;
Src IP, Src Port, Dst IP, Dst Port, and Protocol type, which we
refer to as 5-tuple flow-ID. Since this module runs on the end

device, it builds the flow-to-application mappings by monitor-
ing the netstat logs [2], which provides the mapping between
the active network sockets (TCP, UDP, SSL-encrypted) to their
corresponding applications. Once the module detect a new
flow, it passes its mapping information as well as any collected
side-channel statistics of the flow to the policy controller
module (discussed next).

This module is also responsible to interact with the IPSec
tunneling module (discussed later) for configuring the tunnel-
ing settings when the IPSec policy is applied to establish an
IPSec tunnel with the infrastructure agent. Finally, once an
active application terminates, this module is responsible to
release all the allocated resources in this application in the
client agent, to communicate this to the infrastructure agent to
release the corresponding resources too.

B. Policy Controller Module

The module acts on both the client and the infrastructure
agents as the software defined network local controller. On the
client agent, this module uses the user-defined privacy schemes
and the flow-to-application mapping information (passed from
the user-app module) for creating and maintaining the flow-
policy table entries containing the defined privacy preserving
policies, which is utilized by the Policy Engine modules.
Once a new entry is created, this module on the client agent
shares this entry with the corresponding peer module on the
infrastructure agent that in turn stores and maintains these
entries in its own copy of the flow-policy table. In addition,
this module on the client agent utilizes the device sensors (e.g.,
GPS, battery) and network interface information (e.g., RSSI,
throughput) to periodically estimate the current contexts of the
user (e.g., location), the device (e.g., battery level), and the
network (e.g., load). Similarly, these contexts are periodically
shared with the peer module on the infrastructure agent. In our
current implementation, the contexts are estimated and shared
every five minutes.

Each entry of the flow-policy table is a single policy that
consists of the application/flow identification data (i.e., 5-tuple
flow -ID), the different contexts (e.g., user location, time,
battery level, network load etc.), the applied privacy preserving
scheme (e.g., packet-padding, packet-delaying, IPSec tunnel-
ing, etc.), and the corresponding configuration parameters
(e.g., padding sampling rate, padding size distribution etc.).
Figure 4 shows examples of the table policies entries. The
details of how to collect the user defined privacy schemes in
the user-app module and how to create the entries of the flow-
policy table in this module are out of the scope of this paper
and part of our future work as discussed in Section VII.

This module uses the OpenFlow protocol [27] to create and
modify (i.e., program) the policies in the flow-policy table
maintained in Open vSwithch (OVS) of the User-space Policy
Engine module. To support this programming capability in
PrivacyGuard, we extend the OpenFlow protocol and the OVS
user-space module (discussed next) and OVS kernel module
(i.e, OVS datapath) to create and modify the policies in order
to accommodate new applications/flows. Runtime creation and

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

296



Policy #1
ID: srcIP=’A’, srcPort=’i’, dstIP=’B’, dstPort=’j’
CONTEXT: Location=’Home’ AND Time=[9PM-12AM, 6AM-9AM]
ACTION: Padding=’Normal:µ=1500,σ=10, p=1.0’

Delay=’Uniform:min=0,max=20ms’
Policy #2
ID: srcIP=’A’, srcPort=’k’, dstIP=’B’, dstPort=’l’
CONTEXT: Location=’Home’
ACTION: Padding=’Normal:µ=400,σ=100, p=0.6’

Policy #3
ID: srcIP=’A’, srcPort=’m’, dstIP=’D’, dstPort=’n’
CONTEXT: Battery=High AND Location=HotSpot
ACTION: Padding=’Normal:µ=1500,σ=10, p=1.0’

Delay=’Uniform:min=0,max=20ms’, IPSec
Policy #4
ID: srcIP=’A’, srcPort=’m’, dstIP=’D’, dstPort=’n’
CONTEXT: Battery=High OR WiFi Load=Low
ACTION: Padding=’Normal:µ=1500,σ=10, p=1.0’

Delay=’Uniform:min=0,max=20ms’
Policy #5
ID: srcIP=’A’, srcPort=’m’, dstIP=’D’, dstPort=’n’
CONTEXT: Battery=Low OR WiFi Load=High
ACTION: Padding=’Normal:µ=1500,σ=10, p=0.6’

Delay=’Uniform:min=0,max=20ms’

Fig. 4. Example of a flow-policy table for the traffic shaping schemes.

modification of these policies allow PrivacyGuard to have
flexible and programmable privacy preserving policies.

C. User-space Policy Engine Module

In both client and infrastructure agents, user-space policy
engine module resides in the OVS user-space (i.e., vswitchd).
The responsibility of the this module is to maintain and utilize
the entries of flow-policy table. Furthermore, this module
extends OpenFlow APIs in OVS in order to be utilized by
the policy controller module to setup the table entries (i.e.,
policies).

The module also runs a user-space thread to process the
“upcall” actions from the OVS kernel-space (i.e., datapath)
in the Kernal-space Policy Engine module. Once receiving
an “upcall” action for a packet of a new flow, the thread
extracts the 5-tuple flow-ID from the packet header, gets the
current contexts from the Policy Controller module, and then
searches the flow-policy table entries to find the first best
matching policy entry. After finding the matching entry, the
thread passes the corresponding privacy preserving scheme
and its configuration parameters to the kernel-space policy
engine module that acts accordingly by applying the selected
policy on the rest of the flow packets. Note that, this module
keeps track of all the upcall packets and check periodically
for any context change. Once a context change is detected,
the module repeats the searching process for all the previous
upcall packets given the new contexts.

Using the table example shown in Figure 4, user-space
policy engine module first examines the egress packet header
to match the entries. If both the application/flow identifier from
the packet header (i.e., 5-tuple) and the current context values
matches ID and CONTEXT fields of a specific policy entry,
the traffic shaping scheme with the corresponding parameters
in the ACTION field of that policy will be applied on this
application/flow packets. For example, Policy #3 in the table

states that if the application/flow with 5-tuple identifier is (A,
m, D, n, *), and both the user location is HotSpot and the
device battery level is High, then the actions to apply are: i)
use Gaussian distribution function with parameters µ, σ, and
p to generate the size of the padding bytes, ii) use Uniform
distribution function with range parameters min and max to
extend the IPTs with random delays, and iii) use IPSec. Due to
the space limitation, we omit the details of the policy language.

D. kernel-space Policy Engine Module

In both client and infrastructure agents, each flow packet
passes through the OVS kernel-space (i.e., OVS datapath)
of this module that applies the corresponding flow actions on
the packet. Initially, once the datapath detects a packet of a
new flow, it sends the packet to the user-space policy engine
module through an upcall operation that in turn uses the flow-
policy table to select the privacy preserving scheme and the
corresponding parameters. Then, this information is fed back
to the kernel-space policy engine module to configure the OVS
datapath actions be to applied on the flow.

In OVS datapath, we introduce a number of new actions
to enforce the privacy preserving policies on each packet
of the corresponding flows. For example, we define three
new actions: “adaptive sampling”, “padding”, and “reverse
padding” for the packet-padding policies. Both the “adaptive
sampling” and “padding” actions are applied on the egress
packets that will be transmitted by one of the agents, while
the “reverse padding” action is applied on the received packets
on the other agent. The “padding” action is responsible for
generating the padding bytes for each packet based on the
information of the packet-padding policy received from user-
space policy engine module and then pads the packet with
these bytes.

Note that, in packet-padding, not every packet will be
selected for the “padding” action. The “adaptive sampling”
action uses the sampling probability parameter p to decide for
each packet whether to be padded. Moreover, the action also
allows to modifying p over the lifetime of the flow. Studies
show that the sizes of the initial packets of an application/flow
show more noticeable signature than the later packets [39].
Therefore, in “adaptive sampling” action, using a higher value
of p for the initial packets of a flow2 will increase the
efficiency of the scheme in obfuscating the signature of the
application/flow.

In realizing packet-delaying, similar to our previous
work [24], we have implemented a new qdisc scheduler for
Linux Traffic Control (tc) [3] in this module. We define one
new action; “delay” for the packet-delaying policies. This
action is responsible, by controlling theqdisc scheduler, to
increase the queueing time of each packet of the targeted appli-
cation/flow with a random delay generated by the configured
uniform distribution.

In our implementation, we utilize the unused reserved bits
6-7 of the “ToS” field in the IP header to mark the padded

2We use packet counter statistics to change the sampling probability.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

297



packet selected by “adaptive sampling” action. In addition,
we use the “Options” field, which is currently reserved for
future use, to carry the parameters of the corresponding privacy
preserving scheme (e.g., padding size). On the receiving agent
of PrivacyGuard, its datapath module checks every receiving
ingress packet IP header (i.e. the “ToS” and “Options” fields)
to identify whether the packet is padded, which in turn applies
the “reverse padding” action that uses the information in the
“Options” field to recover the original packet.

E. IPSec Tunneling Module

This module is a part of the OVS datapath in both client
and infrastructure agents and is responsible to define and con-
figure two new vports: internal vport (vport-internal)
and IPsec vport (vport-ipsec) as shown in Figure 3 to
apply IPsec tunneling protocol on top of any other privacy
preserving scheme. Although OVS datapath could support
already existing tunneling ports such as vport-gre and vport-
vxlan that are used for IPsec tunneling protocol, these tunnel-
ing protocols have associated overhead in terms of the corre-
sponding GRE protocol or VLAN protocol headers in addition
to the IPsec protocol header. Therefore, to eliminate these ad-
ditional overheads, we introduce a new class of vport, called
vport-ipsec that provides IPSec tunneling protocol without
any of the overhead in case of using GRE or VLAN tunneling.
OVS datapath routes an IP packet through vport-ipsec

after the corresponding privacy preserving scheme (e.g., traffic
shaping scheme) is applied.

PrivacyGuard binds both vport-internal and
vport-ipsec with IP addresses. The IP address of
vport-internal is used as the default source IP address
for all the running applications in the mobile device. Thus,
PrivacyGuard makes sure that all application’s network flows
pass through the OVS datapath using the vport-internal

port. Note that, PrivacyGuard uses the IP address of the
vport-internal port as the source address to set up the
flow policies in the user-space policy engine module.

Once an egress packet is passed through the OVS datapath,
it gets forwarded to vport-ipsec. Then, before sending it to
the vport-ipsec port, OVS datapath changes the source
IP address of the egress packet to the IP address of the
vport-ipsec port, which is the IP address of the physical
network interface. Once the egress packet passes through
vport-ipsec, it gets forwarded to the XFRM framework that is
basically responsible for handling the IPSec protocol. Note
that the XFRM framework only applies IPSec protocol on the
flows using IPSec tunneling by utilizing Security Associa-
tion Database (SAD) and Security Policy Database (SPD) to
maintain the IPSec configuration parameters for these flows.
Note that, PrivacyGuard policy controller uses the IP address
of vport-ipsec as the source IP address for identifying all
the flows using IPSec tunneling to the IKEv2 daemon, and
eventually in the XFRM framework. Thus, we make sure that the
XFRM framework applies IPsec protocol on the egress packet
after it leaves the vport-ipsec port.

vport-internal

XFRM

Fig. 5. The flowchart of handling an egress packet in PrivacyGuard OVS
datapath.

Figure 5 shows the flowchart of how an egress packet is
handled inside the OVS datapath in the kernel space of Pri-
vacyGuard. Note that, PrivacyGuard kernel component needs
to change the IP header twice when handling egress packets.
Initially, before entering OVS datapath, every egress packet
have IP header with the source IP address A (i.e., IPA), which
is the IP address of vport-internal port. When an egress
packet is selected for privacy preserving scheme (e.g., traffic
shaping scheme) inside the OVS datapath, the “padding”
action adds the “IP option” field in the packet header (i.e.,
IP ′A). Then, before every egress packet get forwarded to the
vport-ipsec port, OVS changes the source IP address to
B (i.e., IP ′B), which is the IP address ofvport-ipsec port.
Finally, the XFRM framework applies IPSec tunneling on the
egress packet before sending it to the WiFi network interface.

V. PERFORMANCE EVALUATION

A. Experiments Setup

In our experiments we use a Nexus 4 smartphone with
Android 4.4 running PrivacyGuard client agent as a user
device, and an Ubuntu 16.04 laptop with Intel Core i5-2520M
@2.5GHz CPU running PrivacyGuard infrastructure agent as
a Wi-Fi AP. We install 8 commercially available IoT device-
based applications on the Nexus device which acts as the
gateway. These applications span different domains including
home appliance, medical and fitness. We use three different
traffic shaping schemes based on packet-padding and packet-
delaying. The first is Norm Pad, which is a packet-padding
scheme where the padding bytes size follows a Gaussian
distribution with µ and σ parameters are set to 400 and
100 bytes respectively. The second is Norm Pad Delay that
applies both a packet-padding scheme (same as Norm Pad),

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

298



and a packet-delaying scheme. In order to calculate the delay,
we calculate both the average minimum IPT (min) and the
average maximum IPT (max) of all the applications. Then, we
use that min-max range to generate uniformly distributed ran-
dom delays to extend the IPTs of the targeted application/flow.
In our implementation, we set min and max to 0ms and
20ms respectively. The last scheme is Max Pad Delay that
pads packets with the maximum possible bytes and also use
the packet-delaying scheme. We mimic the maximum padding
bytes by using a Gaussian distribution and µ and σ parameters
are set to 1500 and 10 bytes respectively. In our evaluation,
we run 100 classification experiments of each of the traffic
shaping schemes for each application.

We evaluate our experiments with metrics based on both
efficiency and overhead. Efficiency is measured using the
accuracy and precision metrics. The accuracy of a traffic
shaping scheme of a specific application is the percentage of
the true positive classifications (i.e., the number of the target
application classification experiments that are correctly identi-
fied the target application) to the total application classification
experiments. On the other hand, the precision is the percentage
of the true positive classifications to the summation of the
true positive classifications and the false positive classifications
(i.e., the number of the other applications classification exper-
iments that are wrongly identified as the target application).
An application with a low precision indicates that the used
traffic shaping scheme confuses the adversary in which it
makes him falsely identify a large portion of the traffic of
the other applications as the target application. Note that the
efficiency metrics are calculated based on the classification
models discussed in Section II.

The overhead is measured in terms of: i) the network band-
width overhead measured as the percentage of the additional
bytes sent over the network, and ii) the energy overhead
measured the percentage of additional power consumption. To
measure the actual power consumption, we connect the battery
of Nexus 4 to the Monsoon Power Monitor device.

B. Traffic Shaping Schemes Performance

In this section, we analyze and evaluate the performance
of Norm Pad, Norm Pad Delay, and Max Pad Delay traffic
shaping schemes as examples of different privacy preserving
schemes. Figure 6 shows the accuracy of Norm Pad scheme
with different probabilities (p) for the eight applications. As
shown, as p increases, the scheme becomes more efficient
in obfuscating the application signature that results in a
decreasing identification accuracy. It is interesting to observe
that while the scheme has high efficiency for some of the
applications such as the Fitbit application with large values of
p, it fails in obfuscating other applications such as the Flux-
lightbulb application. We also tried different configurations of
the scheme in which it generates similar results.

By analyzing the traffic characteristics of the applications
with low efficiency (i.e., Elegato-plug, Avea-lightbulb, Flux-
lightbulb, and iLink-lightbulb), we observed that these applica-
tions transmit their packets at periodic patterns. Therefore, any

privacy scheme that is based only on packet-padding will have
a low efficiency in obfuscating these applications. However, in
Figure 7 that plots the accuracy of Norm Pad Delay scheme,
all applications show better efficiency (i.e., low accuracy) as p
increases. Therefore, different applications/flows have different
traffic characteristics that require different privacy preserving
schemes in order to achieve high efficiency.

Figure 8 shows the accuracy of Max Pad Delay scheme
in which its efficiency exceeds the other two schemes even
at low values of p. This is because some applications such
as Elegato-plug iLink-lightbulb, and Flux-lightbulb transmit
many large size packets in which the signature patterns of
these traffic are hard to be obfuscated with a padding scheme
using few padding bytes. However, when we pad the packets
to the maximum possible packet size (i.e., MTU size), it
becomes hard to identify the signature of these traffic. In
addition, Figure 9 shows the precision of the same scheme. As
shown, the precision drops gracefully as p increases that help
significantly in obfuscating the applications/flows by confusing
the adversary more. For example, while Figure 8 states that
an adversary will be 25% of the time is able to correctly
identify the iLink-lightbulb application when p is 0.8, Figure 9
states that only 60% all the traffic identified as the iLink-
lightbulb application is correct identifications. Therefore, we
could easily conclude that Max Pad Delay scheme with p set
to 0.8 will be able to obfuscate the iLink- lightbulb application
approximately 85% of the time.

Unfortunately, the high efficiency of Max Pad Delay
scheme comes with its associated overhead. Figures 10 and 11
show the energy consumption and network bandwidth over-
head respectively for Max Pad Delay scheme. The overhead
of this scheme exceeds the overhead of the other schemes at
all p values (we omit the other figures due to space limitation).
This is an example that privacy preserving schemes with high
efficiency will be typically associated with high overhead.
Moreover, from figures 6 and 7, we can see that the two
different schemes have similar efficiency (i.e., accuracy is
60%) for the Fitbit application for p values of 0.8 and 0.6
respectively. Note that while the first scheme has significant
overhead in terms of network bandwidth because of large p,
the other scheme achieves an equivalent efficiency but with
lower network overhead (lower p) and additional packet de-
lays. Since different schemes could have equivalent efficiency
but with different overheads, policies need to be carefully
designed based on the impact of these overheads on the
application, user, device, and network.

C. PrivacyGuard Programmability and Flexibility
In Subsection III-C, we discussed some real-world scenarios

and their ideal privacy preserving schemes. We will evaluate
the flexibility and programmability of PrivacyGuard in terms
of the ability to provide such flexible obfuscation schemes and
their efficiency under different contexts. In the following, we
will refer to the policies listed in Figure 4.

We first evaluate the programmability and flexibility of
PrivacyGuard. High sensitive applications such as Fitbit could

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

299



 0

 20

 40

 60

 80

 100

0.4 0.6 0.8 1.0

Ac
cu

rac
y (

%)

Probability (p)

Fig. 6. The accuracy of Norm Pad scheme
for different applications and p values.

 0

 20

 40

 60

 80

 100

0.4 0.6 0.8 1.0

Ac
cu

rac
y (

%)

Probability (p)

Fig. 7. The accuracy of Norm Pad Delay
scheme for different applications and p
values.

 0

 20

 40

 60

 80

 100

0.4 0.6 0.8 1.0

Ac
cu

rac
y (

%)

Probability (p)

Fig. 8. The accuracy of Max Pad Delay
scheme for different applications and p
values.

Elegato-plug
Avea-lightbulb
Flux-lightbulb
iLink-lightbulb
August-lock

Fitbit
Pulse-O2

Gcooler-Thermometer

 0

 20

 40

 60

 80

 100

0.4 0.6 0.8 1.0

Pr
ec

isi
on

 (%
)

Probability (p)

Fig. 9. The precision of Max Pad Delay
scheme for different applications and p
values.

 0
 20
 40
 60
 80

 100
 120
 140

0.4 0.6 0.8 1.0

En
erg

y O
ve

rhe
ad

 
 (%

)

Probability (p)

Fig. 10. The power consumption overhead
of Max Pad Delay scheme.

 0

 50

 100

 150

 200

0.4 0.6 0.8 1.0

Ne
tw

ork
 O

ve
rhe

ad
 

 (%
)

Probability (p)

Fig. 11. The network bandwidth overhead
of Max Pad Delay scheme.

Elegato-plug
Avea-lightbulb
Flux-lightbulb
iLink-lightbulb
August-lock

Fitbit
Pulse-O2

Gcooler-Thermometer

reveal sensitive activities while the user is at home. Therefore,
a policy like Policy #1 that applies high efficient scheme (i.e.,
Max Pad Delay scheme) is used for such sensitive applica-
tions/flows. However, Figure 10 shows that such high efficient
scheme incurs a 150% increase in energy consumption. Since
PrivacyGuard has the capability to create and set different
context parameters dynamically, Policy #1 is configured to
be only applied during the time periods with the sensitive
activities. This flexibility in setting the policy results in a
significant energy saving. In addition, Policy #1 and Policy
#2 show an example of the fine-grained programming ability
of PrivacyGuard in configuring different policies for different
flows of the same application. Different obfuscation schemes
such as like Max Pad Delay and Norm Pad schemes con-
figured in Policy #1 and Policy #2 respectively are suitable
for different flows with different traffic characteristics (i.e.,
periodic traffic with large packet sizes versus real time traffic).

Next, we evaluate PrivacyGuard ability in adapting the
selected policies to the contexts changes with respect to
privacy and performance. Policy #4 is an example of a policy
that applies Max Pad Delay scheme for high performance ef-
ficiency for sensitive applications such as the Fitbit application
when the network load is unsaturated. Figure 8 shows that the
this policy has a very high performance in obfuscating the
Fitbit application with an accuracy as low as 15% when p is
set to 1, which comes with a high network overhead of about
150% additional transmitted bytes as shown in Figure 11.
However, when the network condition changes to a saturated
network with high load, PrivacyGuard switches to apply
Policy #5 for the Fitbit application. Figure 11 shows that this
switch adapts to the new network condition by significantly
dropping the network overhead from 150% to 80% at the cost
of reducing the obfuscation scheme efficiency by increasing

the accuracy from 15% (high efficiency) to 40% (moderate
efficiency) as shown in Figure 8. Similarly, a change in the
device context such as its battery level that changes from
high to low will trigger PrivacyGuard to apply a similar
switch from a high efficient scheme (Policy #4) to a low
energy overhead scheme (Policy #5) in order to preserve the
remaining battery level. Moreover, a change in the user context
by moving into an insecure location from a secure location,
PrivacyGuard seamlessly will enforce the IPSec tunneling
scheme by switching to policy #3 as long as the battery level
of the device is high.
D. PrivacyGuard Overhead

We evaluate the impact of PrivacyGuard modules on the
mobile device performance in terms of both processing de-
lay and CPU usage. In measuring any additional delays in
processing the application packets, we measure the number
of transmitted packets per second when PrivacyGuard is
not active and when PrivacyGuard is enabled. Note that to
eliminate any bias in the measurements, we set the min-max
range of the packet-delaying shaping scheme to zero. Figure 12
shows the cumulative distribution (CDF) of the processing
delay overhead on the mobile device. The figure indicates that
the PrivacyGuard modules has a negligible processing delay
overhead (less than 1% for 80% of the time).

We also measure the CPU usage overhead for both the user-
space and kernel-space modules of PrivacyGuard, which is
shown in Figure 13. From the figure, we notice that the kernel-
space and user-space modules increase the CPU usage with
less than 1.5% and 2% respectively for 80% of the time.

VI. RELATED WORK

In order to protect the application’s network data, there have
been many proposed solutions for managing network-wide

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

300



0

0.2

0.4

0.6

0.8

1

5 10

C
D

F

Processing delay overhead
of PrivacyGuard (%)

Fig. 12. The CDF of the pro-
cessing delay overhead of Priva-
cyGuard.

0

0.2

0.4

0.6

0.8

1

10 20

C
D

F

CPU usage overhead
of PrivacyGuard (%)

User-space
Kernel-space

Fig. 13. The CDF of both the
kernel-space and user-space CPU us-
age overhead of PrivacyGuard.

mobile devices from network infrastructure [41]. However,
such remote network management solutions are not well-suited
for dynamic network devices like mobile devices. Therefore,
researchers are focusing recently on client-side network se-
curity solutions [18], [21]. Among these works, very few
ones have fine-grained and programmable network security
policies targeting the applications. For instance, one of these
solutions provides application specific and device-context-
aware network access policies [18] . In another work, the
authors have used network virtualization technique, similar to
PrivacyGuard, to isolate the network traffic between sensitive
(i.e., medical applications) and non-sensitive applications [21].
However, unlike PrivacyGuard, none of the client-side security
solutions have focused on the network security concern of the
side-channel attack for sensitive mobile applications.

Previously, numerous works have addressed the eavesdrop-
ping attack [40], [46] based on side-channel information.
However, very few works have actually proposed and validated
the use of traffic shaping techniques to address eavesdropping
attack [8], [11]. However, none of these works has consid-
ered IoT devices and mobile device applications. Recently,
researchers were able to show how a side channel attack
could identify IoT devices, and then proposed a traffic shaping
technique based on rate-reshaping [7]. This technique uses
Independent Link Padding based approach that transmits fixed
size packets at a constant rate. Given the programmability of
PrivacyGuard, it is straightforward to adopt this technique as
well as any other traffic shaping technique into PrivacyGuard.

In another work, authors in [45] apply traffic demultiplex-
ing at the MAC layer to protect the Wi-Fi traffic, which
requires expensive MAC layer management between mobile
devices and access points (APs). In addition, this technique
requires modifying the wireless device driver for supporting
the multiple virtual interfaces and distributing the traffic over
these interfaces. PrivacyGuard doesn’t require any driver level
modification and it is not limited to any specific Wi-Fi AP
configuration.

VII. CONCLUSION AND FUTURE WORK

We presented PrivacyGuard, a flexible and programmable
privacy preserving framework to obfuscate the activities of
sensitive IoT and mobile applications from adversarial at-
tack. We developed and evaluated PrivacyGuard’s flexibility,
efficiency, and overhead using a testbed of Android mobile
devices running different sensitive applications.

Currently, we are exploring several approaches that can
recommend optimal privacy schemes and automatically build
policy engine rules with minimum user effort. One approach
is to design a crowdsourcing-based recommendation system
that can assist users to configure optimal policies. Based on
the recent work on permission control of mobile applica-
tions [25], [31] and access control for online social network
applications [33], a similar crowdsourcing strategy could be
utilized to recommend the optimal privacy preserving policy
for a given context. We are also considering a reinforcement
learning [17] based approach in discovering the optimal policy
configurations that maximize certain rewards.

Although traffic shaping is widely accepted by the security
and privacy community as a solution to the side channel
attacks, we are currently studying other types of IoT at-
tacks [5], [7], and the corresponding obfuscation schemes. We
are planning to integrate these new schemes into PrivacyGuard
and then evaluate and compare them with the traffic shaping
schemes under different contexts.

Finally, we are considering to develop a set of PrivacyGuard
APIs to be utilized by application developers. It is expected
that these APIs would give more control to the developer in
selecting the best combination of a functionality and obfusca-
tion scheme. For instance, during a low battery level, instead of
switching to a lower efficiency scheme, the developer could
configure the app to drop less useful functional flows such
as sending advertising data. We believe having these APIs
would help the developers in optimizing the functionalities
and behavior of their applications satisfying both high privacy
and performance to the users.

ACKNOWLEDGMENT

The authors would like to thank our shepherd Prof. Max
Muehlhaeuser and the anonymous reviewers whose comments
have greatly improved this manuscript.

REFERENCES

[1] Beddit Sleep Monitor. http://www.beddit.com/.
[2] Linux Network Management with ”netstat”. http://www.linuxandubuntu.

com/home/linux-network-management-with-netstat.
[3] Linux Traffic Control. https://linux.die.net/man/8/tc.
[4] Open vSwitch. http://openvswitch.org/.
[5] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,

M. Conti, A.-R. Sadeghi, and A. S. Uluagac. Peek-a-boo: I see your
smart home activities, even encrypted! arXiv preprint arXiv:1808.02741,
2018.

[6] Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley, and A. Crabtree.
An analysis of home iot network traffic and behaviour. arXiv preprint
arXiv:1803.05368, 2018.

[7] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster. Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic. arXiv preprint arXiv:1708.05044, 2017.

[8] M. Backes, G. Doychev, and B. Köpf. Preventing side-channel leaks in
web traffic: A formal approach. In 20th Annual Network & Distributed
System Security Symposium (NDSS), February 2013.

[9] S. Banerjee, N. Klingensmith, P. Liu, and A. Sridhar. Edge computing
in the extreme for sustainability. In N. Sastry and S. Chakraborty,
editors, Communication Systems and Networks, pages 93–109, Cham,
2017. Springer International Publishing.

[10] I. Ben Mustafa, T. Nadeem, and E. Halepovic. Flexstream: Towards
flexible adaptive video streaming on end devices using extreme sdn. In
Proceedings of the 26th ACM International Conference on Multimedia,
MM ’18, pages 555–563, 2018.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

301



[11] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in
web applications: A reality today, a challenge tomorrow. In 2010 IEEE
Symposium on Security and Privacy, pages 191–206, May 2010.

[12] T. Davenport and J. Lucker. Running on data: Activity trackers and
the internet of things, 2015. https://dupress.deloitte.com/dup-us-en/
deloitte-review/issue-16/internet-of-thingswearable-technology.html.

[13] Ericsson. Internet of Things forecast., May, 2018. https://www.ericsson.
com/en/mobility-report/internet-of-things-forecast.

[14] D. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and A. K. Dey.
Securacy: an empirical investigation of android applications’ network
usage, privacy and security. In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, page 11. ACM,
2015.

[15] L. Franceschi-Bicchierai. Internet of things teddy bear leaked 2 million
parent and kids message recordings, 2017.
https://motherboard.vice.com/en us/article/pgwean/internet-of-things-
teddy-bear-leaked-2-million-parent-and-kids-message-recordings.

[16] X. Fu, B. Graham, R. Bettati, and W. Zhao. Active traffic analysis
attacks and countermeasures. In International Conference on Computer
Networks and Mobile Computing (ICCNMC), pages 31–39, Oct 2003.

[17] V. Heidrich-Meisner, M. Lauer, C. Igel, and M. A. Riedmiller. Re-
inforcement learning in a nutshell. In 15th European Symposium on
Artificial Neural Networks (ESANN), pages 277–288, 2007.

[18] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu. Towards sdn-
defined programmable byod (bring your own device) security. In 23rd
Annual Network & Distributed System Security Symposium (NDSS),
2016.

[19] IHS Markit. More than Six Billion Smartphones by 2020, IHS Markit
Says., Jan, 2017. http://news.ihsmarkit.com/press-release/technology/
more-six-billion-smartphones-2020-ihs-markit-says.

[20] Juniper Research Ltd. Wi-fi calling operators., June, 2015.
http://www.juniperresearch.com/documentlibrary/white-papers/
wifi-calling-operators?utm source=gorkanapr&utm medium=email&
utm campaign=dataoffload15pr2.

[21] M. Kano. SeaCat: an SDN end-to-end containment architecture. Mas-
ter’s thesis, 2015.

[22] S. Kumar. Ubiquitous smart home system using android application.
arXiv preprint arXiv:1402.2114, 2014.

[23] N. Lars. Connected medical devices, apps: Are they leading the iot
revolution or vice versa?, 2014.
https://www.wired.com/insights/2014/06/connected-medical-devices-
apps-leading-iot-revolution-vice-versa/.

[24] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.
Kim, and T. Nadeem. mesdn: mobile extension of sdn. In Proceedings of
the fifth international workshop on Mobile cloud computing & services,
pages 7–14. ACM, 2014.

[25] R. Liu, J. Cao, K. Zhang, W. Gao, J. Liang, and L. Yang. When privacy
meets usability: Unobtrusive privacy permission recommendation system
for mobile apps based on crowdsourcing. IEEE Transactions on Services
Computing, 11(5):864–878, Sep. 2018.

[26] W. M. Liu, L. Wang, P. Cheng, K. Ren, S. Zhu, and M. Debbabi. Pptp:
Privacy-preserving traffic padding in web-based applications. IEEE
Transactions on Dependable and Secure Computing, 11(6):538–552,
Nov 2014.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[28] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and
S. Tarkoma. Iot sentinel: Automated device-type identification for
security enforcement in iot. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pages 2177–2184, June
2017.

[29] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wetherall.
802.11 user fingerprinting. In Proceedings of the 13th Annual ACM

International Conference on Mobile Computing and Networking, Mobi-
Com ’07, pages 99–110, 2007.

[30] H. Rahbari and M. Krunz. Secrecy beyond encryption: obfuscating trans-
mission signatures in wireless communications. IEEE Communications
Magazine, 53(12):54–60, Dec 2015.

[31] B. Rashidi, C. Fung, A. Nguyen, T. Vu, and E. Bertino. Android
user privacy preserving through crowdsourcing. IEEE Transactions on
Information Forensics and Security, 13(3):773–787, March 2018.

[32] C. E. Shannon. Communication theory of secrecy systems. The Bell
System Technical Journal, 28(4):656–715, Oct 1949.

[33] M. Shehab, A. Squicciarini, G.-J. Ahn, and I. Kokkinou. Access
control for online social networks third party applications. Computers
& Security, 31(8):897 – 911, 2012.

[34] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman. Characterizing and classify-
ing iot traffic in smart cities and campuses. In 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pages
559–564. IEEE, 2017.

[35] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic. Who do you
sync you are?: smartphone fingerprinting via application behaviour. In
Proceedings of the sixth ACM conference on Security and privacy in
wireless and mobile networks, pages 7–12. ACM, 2013.

[36] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan,
and L. Qiu. Statistical identification of encrypted web browsing traffic.
In Proceedings 2002 IEEE Symposium on Security and Privacy, pages
19–30, May 2002.

[37] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic. In 2016 IEEE European Symposium on Security and Privacy
(EuroS P), pages 439–454, March 2016.

[38] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Robust smart-
phone app identification via encrypted network traffic analysis. IEEE
Transactions on Information Forensics and Security, 13(1):63–78, Jan
2018.

[39] M. Uddin and T. Nadeem. Trafficvision: A case for pushing software
defined networks to wireless edges. In IEEE 13th International Con-
ference on Mobile Ad Hoc and Sensor Systems (MASS), pages 37–46.
IEEE, 2016.

[40] Q. Wang, A. Yahyavi, B. Kemme, and W. He. I know what you did
on your smartphone: Inferring app usage over encrypted data traffic.
In 2015 IEEE Conference on Communications and Network Security
(CNS), pages 433–441, Sep. 2015.

[41] X. Wang, K. Sun, Y. Wang, and J. Jing. Deepdroid: Dynamically
enforcing enterprise policy on android devices. In 22nd Annual Network
& Distributed System Security Symposium (NDSS), 2015.

[42] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morphing: An efficient
defense against statistical traffic analysis. In In Proceedings of the 16th
Network and Distributed Security Symposium, pages 237–250. IEEE,
2009.

[43] M. Wynn, K. Tillotson, R. Kao, A. Calderon, A. Murillo, J. Camargo,
R. Mantilla, B. Rangel, A. A. Cardenas, and S. Rueda. Sexual intimacy
in the age of smart devices: Are we practicing safe iot? In Proceedings
of the 2017 Workshop on Internet of Things Security and Privacy, pages
25–30. ACM, 2017.

[44] B. Yan and G. Chen. Appjoy: Personalized mobile application discovery.
In Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages 113–126, 2011.

[45] F. Zhang, W. He, Y. Chen, Z. Li, X. Wang, S. Chen, and X. Liu.
Thwarting wi-fi side-channel analysis through traffic demultiplexing.
IEEE Transactions on Wireless Communications, 13(1):86–98, January
2014.

[46] F. Zhang, W. He, X. Liu, and P. G. Bridges. Inferring users’ online
activities through traffic analysis. In Proceedings of the Fourth ACM
Conference on Wireless Network Security, WiSec ’11, pages 59–70,
2011.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

302


