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Abstract—Designing fast and secure RFID private authentica-
tion with structured key management is one of the most essential
components for RFID-enabled large-scale object management.
Since group keys are shared by some tags in structured key-
based authentication, physical tampering of tags, so called the
compromise attack, may enable the adversary to obtain group
keys stored in the compromised tags, which in turn can be
used to distinguish other tags. All existing structured key-based
protocols try to reduce the common group key effect to preserve
high privacy. However, the theoretical bound of weak privacy
achievable by structured key-based authentication remains un-
known. In this paper, we investigate weak privacy in RFID
authentication. To this end, we first formulate a mathematical
model which identifies the probability of two tags being linked
with respect to the number of group keys. Our model shows
that the existing solutions are far from the ultimate goal in
weak privacy. Then, we propose a k-neighbor graph-based RFID
authentication (KNGA) protocol, where random walk over a k-
neighbor graph is performed. In addition, we show that KNGA
achieves the performance bound, and we then quantify the
degree of privacy by anonymity. Finally, the extensive simulations
demonstrate that the proposed protocol successfully achieves its
design goals.

Index Terms—Radio Frequency Identification, RFID, privacy
and security, private authentication

I. INTRODUCTION

Radio Frequency Identification (RFID) is enabling tagging

technologies for fast and secure object identification in appli-

cations such as supply chain managements [1], transportation

payments, and smart cards [2]. The security and privacy con-

cerns are of significance for its wide adoption. To preserve the

trustworthiness of large-scale RFID systems, private authen-

tication protocols with light-weight cryptographic operations

are widely studied.

Two notions of RFID privacy are defined in [3]. One is

indistinguishability-based privacy (ind-privacy) which guaran-

tees that the replies from two tags are not computationally

distinguishable without knowing internal states; the other is

unpredictability-based privacy (unp-privacy) where no adver-

sary can predict the output from both a tag and a reader

engaging in an interrogation protocol. Thus, in the unp-privacy

model, two tags, each of which belongs to two different RFID

systems, are not computationally distinguishable as long as

the outputs of these protocols are of the same length. The

necessary and sufficient condition to achieve the ind-privacy

and/or ump-privacy is that the computational power of tags can

be used to construct a pseudo random function family (PRF).

Unp-privacy implies ind-privacy, but not vice versa.

For each notion of privacy, strong and weak levels of

privacy are defined in [3]. Strong privacy indicates that ind-

privacy/unp-privacy holds even when some tags in the system

are compromised and the keys associated with them are

disclosed to adversaries. In the weak privacy model, ind-

privacy/unp-privacy is guaranteed as long as no tag is compro-

mised. Any private authentication protocol with a structured

key management is unfortunately not able to achieve strong

privacy should some tags in the system be compromised.

This is because group keys are shared by several tags and

an adversary can distinguish tag’s replies from compromised

keys in the past interrogations.

To achieve high degree of weak privacy, all existing struc-

tured key-based authentication protocols known to us try to

reduce the probability of two tags being linked by the adver-

sary who holds the keys from the compromised tags [4]–[11].

However, the performance bound of weak privacy in terms

of the correlation probability remains unknown. Achieving

the performance bound has not only theoretical significance,

but also practical importance to understand the fundamental

security and privacy issues in monitoring and managing a large

number of tagged items. Therefore, in this paper, we seek to

understand the performance bound of achievable weak privacy

in private authentication. The contributions of this paper are

as follows.

• First, we derive the performance bound of weak privacy

that any structured private RFID authentication protocol

can achieve. To formulate the limitation of all protocols,

we quantify the possible correlation probability of two tags

with respect to the number of group keys. By doing this, we

demonstrate that the correlation probability of the existing

solutions is much larger than the performance bound. This

gap indicates that there is plenty of room for improving

the existing private authentication protocols.

• Second, we propose a k-neighbor graph-based authentica-

tion scheme (KNGA), which uses a k-neighbor graph as

the key structure for a given balancing factor k. Given

the number of group keys, the proposed scheme reaches
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the performance bound of weak privacy and has the same

logarithmic authentication speed and the same communi-

cations cost as the existing solutions.

• Third, we build an extended anonymity as the privacy

metric under the compromise attack. Unlike the existing

anonymity definition provided in [9], [10], our anonymity

model clarifies the strong and weak privacy, where uncom-

promised tags’ anonymity remains 1 as long as they are

not linked with compromised tags.

• Finally, we have conducted extensive simulations to

demonstrate that our KNGA outperforms the existing so-

lutions in terms of system anonymity in keeping with

reasonable key storage and computation cost.

The rest of this paper is organized as follows. Related

works are reviewed in Section II. Section III provides the

preliminaries. The performance bound of structured key-based

authentication is presented in IV. In Section V, we propose

the KNGA protocol. Both the quantitative security/privacy

analyses of our KNGA are provided in Sections VI. The per-

formance of the proposed scheme is evaluated by simulations

in Section VII. Section VIII concludes this paper.

II. RELATED WORK

The security issue considered in this paper is private au-

thentication protocols for large-scale RFID systems, where

secret keys are assigned to tags before deployment. Due to

the computational weakness of passive tags, the light-weight

operations, e.g., the XOR, concatenation, 16-bit pseudorandom

generator, and collision resistant hash function, can be used as

building blocks [12]. While there are many security notions

for different contexts, in this paper, we follow the notion of

RFID privacy provided in [3]. We elaborate on the private

authentication protocols in the subsequent subsections.

A. Unstructured-Based Authentication

Hash-lock [13] is the baseline of private authentication

protocols, where each tag replies a hashed ID with its unique

key concatenating nonce. Then, the reader scans all the keys

in the back-end-server to identify the tag. As a result, any

protocol in this category causes slow authentication, i.e., have

the time complexity of O(n), where n is the number of tags in

the system. This motivates many researchers to design private

authentication protocols with structured key management.

B. Structured-Based Authentication

In structured-based authentication protocols, each tag stores

its unique key and a set of group keys, and each group key is

shared among several tags. A tag’s reply consists of a set of

hashed values generated using its unique key and each of its

group keys. In the tree-based protocols [4], the unique keys

are located at the leaf nodes of a balanced tree and group keys

are mapped to non-leaf nodes. Each tag is assigned to one of

the leaf nodes and obtains the unique key at its leaf node as

well as the set of group keys on the non-leaf nodes along the

path to the root. The reader singulates a tag by traveling the

tree from the root to the corresponding leaf node. Many tree-

based variants [5]–[7] are proposed to improve the tree-based

protocol. Dynamic key updating in [5] securely updates the

keys in the key structure to counteract the compromise attack,

where some tags are physically tampered and the group keys

associated with compromised tags are leaked. ACTION [6]

uses a sparse tree to reduce the correlation of group keys

shared among tags, and ECNP [7] reduces the length of

the authentication path in a tree by cryptographic encoding.

Including the key search and hash computation, all the tree-

based protocols require O (logk n) overhead, where k is the

balancing factor.

The group-based protocol [8] and AnonPri [9] divide the

tags in the system into disjoint groups, and each tag maintains

its unique key and the group key of the group to which it

belongs. The reader first scans all the group keys to confine

key search space, and then, tries the unique keys associated

with the corresponding group. However, group-based protocols

still need O(n) for authentication.

C. Private Authentication with O(1) Overhead

There exist authentication protocols with O(1) authentica-

tion overhead, such as [14]–[17]. RWP [14] explicitly assigns

each tag with no common keys, where an internal node in a

tree is used as an anchor referring to the corresponding leaf

node. Although the authentication complexity is claimed as

O(1), RWP fails to consider the search cost of the hashed

components in a tag’s reply from the back-end server. Simi-

larly, LAST [15] insists that their protocol incurs only O(1)
overhead, but the key searching is again not considered as a

part of authentication. Recently, ETAP [16], which is a token-

based protocol and very different from any of the existing

works, was proposed. In ETAP, a set of tokens is used at each

tag to simulate the pseudo randomness of a hash function, and

then, the reader maps the received token to the hash index of

the corresponding tag entry. The authors claim that the hash

index provides random access in O(1). However, we argue

that this is the average performance, and thus, ETAP incurs

O(n) in the worst case. The protocol in [17] achieves O(1)
access with the database containing pre-computed truncated

hashed values of possible tags’ replies. This approach adds

too much storage cost. million tags. Therefore, the protocols

in this category cannot be fairly compared with the structured-

key authentication protocols.

D. Randomized Structured-Based Authentication

The protocols in this category are mostly related to this

paper. In structured-based authentication, two tags can be

linked from the group keys shared in common. To remedy this

issue, randomized structured-based approaches [10], [11], [18]

were proposed, where random walking over a data structure

is incorporated in keeping with the worst case authentica-

tion speed being O (logk n). RSLA [10] uses skip lists as

a balanced tree alternative. The difference from tree-base

protocols is that random shifting is taken at each level of

the structure. With this randomization, two tags are never
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Fig. 1. An example of 4-neighbor graphs.

correlated unless they have exactly the same set of group

keys under the compromise attack. RSGA [11] further reduces

the probability that two tags are correlated from group keys

by using advanced data structure, skip graphs. The existing

solutions try to alleviate the common keys effect among tags.

Nevertheless, none of them have reached the performance

bound.

III. PRELIMINARIES

A k-D hypercube consists of 2k vertices, and two vertices

are connected if and only if the Hamming distance between

the IDs of two vertices equals one. A k-D hypercube network

(HCN) is a graph in which a set of k-D hypercubes are

connected together. For example, Figure 1 illustrates a 3-D

HCN, where a circle represents a node, a solid line represents

the link between two nodes in the same hypercube, and a

dotted line represents the link between two nodes in different

hypercubes. In this graph, there are three 3-D hypercubes

colored white, light gray, and dark gray, respectively.

A graph is said to be a k-neighbor graph if and only if every

node has exactly k neighbors. The graph in Figure 1 is a 4-

neighbor graph, since every vertex in the HCN has exactly 4

neighbors. Note that the k-neighbor graph is different from the

k-connected graph, where each node has at least k neighbors.

IV. THE PERFORMANCE BOUND OF WEAK PRIVACY

A. Notations and Definitions

An RFID system consists of one RF reader and a set of n RF

tags, represented by RFID(R, T ), where T = {t1, t2, ..., tn}.
Nonce is denoted by rr and rt, each of which is randomly

selected by a reader and a tag. We denote a collision-resistant

hash function by H(.), a pseudorandom function family (PRF)

by F (.), an encryption function by E(.), and a decryption

function by D(.), respectively.

Each tag, say tag t, stores a set of m group keys GKt =
{gk1, gk2, .., gkm} and one unique key skt. In a key structure,

there are ng group keys. Both m and ng are determined by

the number of tags n in the system and the balancing factor

k of the data structure. The notations used in this paper are

listed in Table I.

B. The Correlation Probability

In this section, we seek to understand the performance

bound of the weak privacy model. Consider an RFID system

with n tags, one of which is compromised. If an authentication

protocol achieves strong privacy, then the n − 1 uncompro-

mised tags are anonymous. That is, no adversary can identify

the other tags with probability greater than 1/(n− 1). In this

TABLE I
DEFINITION OF NOTATION.

Symbols Definition

R The reader in the RFID system
T The set of tags in the RFID system
ti Tag i
n The number of tags in a system, |T |
ng The number of group keys in the key structure
m The number of group keys assigned to each tag
ski Tag i’s unique secret key
GKt A set of group keys of tag t, {gk1, gk2, ..., gkm}
RNt A set of rand. numbers of tag t, {rn1, rn2, ..., rnm}
rt, rr Nonces from a tag and a reader
k The balancing factor of data structure

α, β, γ A tag’s reply
π The verification code from a reader

case, the anonymous set is of size n − 1. However, in an

authentication protocol with structured key management, the

anonymous set size significantly decreases, as some tags share

the same group keys. With a randomized key structure, the

anonymous set size remains n− 1, as long as a tag does not

have exactly the same set of group keys as the compromised

tag. We refer to the probability that two tags have the same set

of group keys as the correlation probability, which is formally

defined as follows.

Definition 1 (The correlation probability) Suppose two

tags t and t′ are each assigned a random set of group keys,

say GKt and GKt′ , respectively, with |GKt| = |GKt′ |. Then,

their correlation probability is defined as Pr[GKt = GKt′ ].

Note that in order to achieve unp-privacy, any two tags must

have the same number of group keys, or their number of replies

would be different and render them distinguishable. Given a

fixed size of group keys, the lower bound of the correlation

probability that two tags will be linked can be computed.

In other words, the performance bound of weak privacy can

be defined by the correlation probability with respect to the

number of group keys in the system.

C. The Performance Bound

Let ng be the number of group keys in a key structure,

which is a function of the number of tags in the system.

We will discuss how to compute ng for each different key

structure later. Let m be the number of group keys each tag

obtains. Consider that t and t′ have a set of group keys,

GKt = {gk1, gk2, ..., gkm} and GKt′ = {gk
′
1, gk

′
2, ..., gk

′
m},

respectively. Each group key is assumed to be randomly

assigned by the uniform distribution. Note that keys must be

selected by the uniform distribution to achieve the highest

degree of privacy [19]. In general, for the i-th group key,

Pr[gki = gk′i] = (m − i + 1)/(ng − i + 1) for 1 ≤ i ≤ m.

Therefore, given two parameters, ng and m, the lower bound

of the correlation probability of two tags is obtained by

Pr[GKt = GKt′ | ng,m] ≥
m
∏

i=1

m− i+ 1

ng − i+ 1
. (1)

Note that the set of group keys assigned to each tag is

selected by a permutation of all the group keys, and each
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group key can be used for any level. On the other hand, both

skip lists [11] and skip graphs [10] are hierarchical, and the

keys at the i-th level are never used in another level. Therefore,

the order of group keys in RSLA and RSGA matters.

D. The Analysis

In this subsection, we will show the gap between the

correlation probability achievable by the existing solutions and

the performance bound.

In skip lists [10] and a skip graph [11], there is a constant

number of nodes in a key structure. Let I(.) be a mono-

tonically increasing step function, and we define I(k, n) =
k⌈logk n⌉. For both RSLA and RSGA, the number of group

keys assigned to each tag is computed by m = ⌈logk n⌉ − 1.

The correlation probability of RSLA [10] and RSGA [11] are

obtained by Equations 2 and 3, respectively.

Pr[GKt = GKt′ |RSLA] =
m
∏

i=1

1

ki
(2)

Pr[GKt = GKt′ |RSGA] =

(

1

I(k, n)

)m

(3)

RSGA achieves a smaller correlation probability than

RSLA. This is because the number of group keys in a skip

graph is greater than that in skip lists, when the input size n
is the same. We derive the gap between the performance of

the existing solutions and the bound as follows. The number

of group keys in a key structure is a function of the number

of tags in the system, denoted by ng := g(n). In skip lists

and a skip graph, the number of internal nodes, each of

which corresponds to the same group key, are determined

by the number of tags. Thus, the number of group keys in

RSLA is obtained by gsl(n) =
∑⌈logk n⌉−1

i=1 ki, and that in

RSGA is computed by gsg(n) = I(k, n)(⌈logk n⌉ − 1). The

number of group keys that each tag stores is computed by

m = ⌈logk n⌉ − 1, since the number of levels in skip lists

and a skip graph is ⌈logk n⌉ and the leaf nodes do not store

group keys. For the given parameters gsl(n), gsg(n), and m,

the performance bound of RSLA and RSGA are obtained from

Equation 1.

Figure 2 shows the correlation probability of the numer-

ical results and their performance bound for RSLA and

RSGA. In this figure, Bound 1 is defined as Pr[GKt =
GKt′ |gsl(n), ⌈logk n⌉ − 1], and Bound 2 is defined as

Pr[GKt = GKt′ |gsl(n), ⌈logk n⌉ − 1]. Naturally, the corre-

lation probability decreases as the number of tags increases.

This is because the number of group keys m that each tag

stores increases, and as a result, the correlation probability

decreases. The gaps between the numerical results and their

bound can be observed in Figure 2, i.e., the gap between RSLA

and Bound 1 is 1024, and that between RSGA and Bound

2 is 105, respectively. In addition, the expected correlation

probabilities of RSLA and RSGA are plotted, when one eighth

(12.5%) of the tags are compromised, which are labeled by

RSLA (12.5%) and RSGA (12.5%), respectively. It can be

observed that the gap is further enlarged when some portion

of tags is compromised. Therefore, there is still a significant

space to improve the private authentication with structured key

management, and this is the motivation of this research.

V. k-NEIGHBOR GRAPH-BASED PRIVATE

AUTHENTICATION

A. The Basic Idea

The data structures used in the existing solutions, i.e., trees,

skip lists, skip graphs, and their variants, have two issues. One

issue is the property of hierarchy, where there exist successor

and descendant relations among the internal nodes in a tree,

skip lists, and a skip graph. Such a property prevents a protocol

from fully utilizing the random walks over a key structure. As

a result, the existing solution cannot reach the lower bound

of the correlation probability. Thus, the relation among the

internal nodes in a key structure should be flat.

The other issue is that the number of keys and random

numbers stored in a tag’s memory increases in proportion to

the total number of tags. Since the tag’s memory is of limited

size, e.g., a 512-bit, each tag cannot store too many keys. In

other words, for a given storage constraint of tags, the number

of tags supported by an RFID system is bounded. Therefore,

the number of group keys and random numbers should be

independent from the number of tags to support scalable RFID

systems.

Based on the aforementioned design goals, we apply the

k-neighbor graph as a key structure from a randomly selected

entry node, where a pointer moves over the graph by scanning

k neighboring nodes and taking a random jump several times.

B. Overview

Similar to the other private authentication protocols, the pro-

posed k-neighbor graph-based authentication (KNGA) proto-

col has four components: the key initialization, authentication,

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

36



Algorithm 1 KeyIssue(T , {v0, vi, ..., vng
})

1: /* The key issuer does following. */
2: Each tag t is assigned to node vi.
3: /* For each tag t, the key issuer does following. */
4: for each tag t in the system do
5: RNt = {}, GKt = {}
6: skt ← vi.sk /* vi is the current node. */
7: vi ←rand N(vi).
8: for j from m to 1 do
9: rnj ←rand [0, ng − 1]

10: u← (i+ rnj) mod ng

11: vi ← vu /* The pointer moves. */
12: Add rnj to RNt and vi.gk to GKt.
13: j ← j − 1
14: α←rand N(vi)
15: Tag t stores skt, GKt, RNt, and α.

key updating, and system maintenance. Each phase, except the

system maintenance, is very different from existing solutions.

The input parameters are the balancing factor k, the number

of tags n, the number of group keys ng , and the number of

group keys m that each tag stores. In the key initialization,

a set of (k − 1)-D hypercubes are generated and connected

each other to form a k-neighbor graph. Each node of the k-

neighbor graph contains a unique private key and a group key.

Each tag is randomly located at one of the nodes and obtains

a unique key, a set of group keys, a set of random numbers,

and the pointer to its entry node, by randomly walking over

the k-neighbor graph. In the authentication process, the RF

reader in the system can securely singulate individual tags.

On receiving a query from the reader, a tag computes its reply

using the set of parameters provided in the key initialization

phase. Then, the reader identifies the tag by traveling the k-

neighbor graph starting from the entry node of the tag. Finally,

the reader replies with a verification code to the tag for mutual

authentication. In the key updating, each tag updates its secret

and group keys for every interrogation. At the same time, the

keys maintained by the reader are also updated. In the system

maintenance, the k-neighbor graph may grow and shrink to

handle dynamic environments where new tags join to and old

tags leave from the system. Elaboration of each phase follows

in subsequent subsections.

C. Construction of A k-Neighbor Graph

The input parameters are the balancing factor k (k ≥ 2),

the number of tags n, the number of group keys ng , and the

number of group keys m that each tag stores. Note that 2k−1 ≤
n must hold for generating valid key structure. Given these

parameters, a set of (k − 1)-D hypercubes with each having

2k−1 nodes are generated. The number of hypercubes, denoted

by h, can be arbitrary, as long as h ≥ n/2k−1 to support all the

n tags. At this moment, each node has (k−1) direct neighbors,

and a k-neighbor graph is constructed by connecting these h
hypercubes. That is, each node is connected with another node

in a different hypercube. One way to do this is to connect the

hybercubes in a ring structure. Let V (i) be a set of the nodes

in the i-th hybercube, {v
(i)
0 , v

(i)
1 , ..., v

(i)

2k−1−1
}. For each i (1 ≤

i ≤ h−1), each of the second half nodes in V (i) is connected

Algorithm 2 ReplyToReader(rr)

1: /* On receiving a query, tag t does following. */
2: Generates rt.
3: for j from 1 to m do
4: /* Note that the base rn0 is empty. */
5: βj .hash← H(gkj ||rnj−1||rt||rr)
6: βj .num← E(gkj , rnj)
7: Add βj to β.
8: γ ← IDt ⊕ F (0||skt||rnm||rt||rr)
9: Tag t replies with α, β, γ, and rt.

to one of the first half nodes in V (i+1). For the first and last

hybercube, each of the first half nodes in V (1) is connected

to one of the second half nodes in V (h). By doing so, the

set of hypercubes are connected to each other, and each node

in the graph has exactly k neighbors. Note that we employ

a hypercube network to construct a k neighbor graph, and

henceafter the nodes in the graph have a flat relationship, i.e.,

we distinguish neither to which hypercube each node belongs

nor if a link connects to the different hypercubes. A unique

identifier is given to each node, e.g., vu for node v
(i)
j where

u = i · 2k−1 + j (1 ≤ i ≤ h and 0 ≤ j ≤ 2k−1 − 1).

The proposed structure achieves our design goals. Since

there is no hierarchy in the structure, the relation among nodes

is flat. The number of group keys m that each tag stores is

independent from the number of tags n in the system. The

value of m can be flexibly tuned as long as m ≤ ng .

Example of k-neighbor graph Figure 1 shows a 4-neighbor

graph, which is created by connecting three 3-D hypercubes

with each being colored by white, light gray, and dark gray,

denoted by V (1), V (2), V (3), respectively. The first half of the

nodes in a 3-D hypercube includes 000, 001, 010, and 011;

the second half nodes are 100, 101, 110, and 111. Thus, each

of the first half nodes in V (j) (j = {1, 2, 3}) and one of the

second half nodes in V (i+1) (i = {2, 3, 1}) are connected to

each other. As a result, each node has exactly 4 neighbors.

D. Key Issuing

A pair of a unique key and a group key are randomly

generated and assigned to each node in the graph. Node vi
in the graph has two variables to store these keys, denoted

by vi.sk and vi.gk, respectively. In addition, vi stores the ID

of the tag t as vi.id. Each tag t is randomly assigned to one

node in the graph. Note that no more than one tag is assigned

to the same node. Let vi be the current node at which the

pointer is located. At the beginning, vi indicates to which tag

t is assigned. By a random walk over the graph, tag t obtains

a unique key sk, a set of group keys GKt, a set of random

numbers RNt, and the entry pointer α to the graph. First, tag

t obtains the secret key stored at vi.sk. Let N(vi) be an open

neighbor set of node vi. The pointer randomly moves to one

of the k nodes in N(vi).
For each level j from m to 1, the key issuer repeats the

following. A random number rnj ∈ [0, ng − 1] for the j-

th level is generated. The pointer jumps to the corresponding

node, say vu, such that u = (i + rnj) mod ng , where i is

the current node ID. Tag t obtains group key gkj from vu.gk.
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Each of the rnj and gkj is then added to the head of RNt

and GKt, respectively. Assume that the pointer is at vi after

this process. One of the nodes in N(vi) is randomly selected,

and the node ID is saved to α. The value of α is used as the

entry point of the graph in the authentication phase.

At the end of this process, tag t obtains one unique key

skt, m group keys GKt, a set of m random numbers RNt,

and the entry point α. The pseudo code of the key issuing is

provided in Algorithm 1.

Example of Key Issuing Figure 3 shows an example of the

key issuing phase of KNGA, where k = 2, m = 2, and

ng = 8. Tag t is located at v3 and let skt ← v3.sk (i.e.,

sk3). Then, v2 is randomly selected out of N(v3) = {v2, v4},
and the pointer moves to v2. A jump number rn2 = 6 is

randomly generated, and the pointer moves to v0 as (2+ rn2)
mod ng = 0, where 2 is the v2’s ID. Tag t obtains v0.gk
(i.e., gk0) as one of the group keys. Random number 6 and

group key gk0 are added to RNt = {6} and GKt = {gk0},
respectively. Similarly, the pointer moves to either v1 or v7,

both of which are in N(v0). Assume that v1 is selected

and the pointer moves to v1. Again, a random number is

generated, say rn1 = 4. The pointer moves to v5, since

(1 + rn1) mod ng = 5. Random number 4 and group key

gk5 are added to the head of the lists, i.e., RNt = {4, 6} and

GKt = {gk5, gk0}. Assume that v6 is selected from N(v5).
Finally, the pointer randomly moves to node v6 ∈ N(v5), and

α = v6 is used as the entry point of tag t to this key structure.

E. Mutual Authentication

After key initialization, the reader can securely communi-

cate with tags, and they can mutually authenticate each other.

In the proposed protocol, the reader first sends a query with

nonce rr, and then, a tag computes an encrypted reply using

randomly generated nonce rt. On receiving the tag’s reply,

the reader searches the tag by a random walk over the key

structure. Finally, the reader sends back a verification code so

that the tag also authenticates the reader.

Assume that tag t has the unique key skt, a set of group

keys GKt = {gk1, gk2, ..., gkm}, a set of random numbers

RNt = {rn1, rn2, .., rnm}, and the entry point α. On receiv-

ing a query with rr from the reader, tag t randomly generates

nonce rt. Let β = {β1, β2, ..., βm}, where each βj consists

of βj .hash and βj .num. Each βj is computed using group

key gki and random number rni for 1 ≤ i ≤ m as follows.

The value of βj .hash is computed by H(gkj ||rnj−1||rt||rr),
where the base rn0 is empty. On the other hand, βj .num is

computed by E(gkj , rnj). The value of γ is obtained using the

secret key skt by IDt⊕F (0||skt||rnm||rt||rr), where IDt is

the tag t’s ID. Note that 0 is concatenated at the beginning of

the input for the mutual authentication. Then, the tag replies

with α, β, γ, and rt to the reader. The pseudo code of how a

tag generates a reply is given in Algorithm 2.

On receiving the tag’s reply, the reader moves the pointer to

the node indicated by α, say vi. For each βj , the reader repeats

the following. Since the balancing factor is k, each node has

Algorithm 3 Authentication(α, β, γ, rt)
1: vi ← α.
2: for j from 1 to m do
3: for each vu ∈ N(vi) do
4: /* Note that the base rn0 is empty. */
5: if H(vu.gk||rnj−1||rt||rr) = βj .hash then
6: rnj ← D(vu.gk, βj .num)
7: i← (u− rnj) mod ng /* The pointer moves */
8: j ← j + 1
9: if The corresponding group key is not found then

10: Reader R rejects tag t.
11: for each vu ∈ N(vi) do
12: if vi.id = γ ⊕ F (0||vi.sk||rnm||rt||rr) then
13: Tag t is identified by vi.id and vi.sk.
14: Reader R accepts tag t and runs Algorithm 4.
15: if The corresponding unique key is not found then
16: Reader R rejects tag t.

Algorithm 4 MutualAuthentication(R,t)

1: /* Reader R does following at the end of Algorithm 3. */
2: /* vi is the node that tag t is located. */
3: π ← vi.id⊕ F (1||vi.sk||rt||rr)
4: R sends π to tag t.
5: /* On receiving π, tag t does following */
6: ID′

t ← π ⊕ F (1||skt||rt||rr)
7: if ID′

t = IDt then Tag t accepts reader R.
8: else Tag t rejects reader R.

exactly k neighbors, and one of them has the group keys gkj
corresponding to βj .hashs. The reader scans all the nodes in

N(vi) and finds the corresponding node, say vu, by validating

if H(vu.gk||rnj−1||rt||rr) equals to βj .hash. Also, the reader

decrypts βj .num using D(vu.gk, βj .num) to obtain rnj . The

pointer moves to the node vi where i = (u− rnj) mod ng .

Assume the pointer is located at vi when the reader finds the

group keys of βj for all 1 ≤ j ≤ m. One of the nodes in

N(vi) has the corresponding unique key to γ, and thus, the

reader searches vu such that γ⊕F (0||vu.sk||rt||rr) equals to

vu.id. By identifying the corresponding node vu, the reader

authenticates tag t. The pseudo code of the tag singulation

process is presented in Algorithm 3.

In KNGA, the tag can also authenticate the reader. Assume

that the reader identifies tag t located at vi in the authentication

phase. The reader generates a verification code, denoted by

π, by computing π = vi.id ⊕ F (1||vi.sk||rt||rr), and then

forwards it to tag t. Note that 1 is concatenated in the input.

When tag t receives π from the reader, it obtains ID′ by taking

π⊕F (1||skt||rt||rr). If the reader has valid IDt and skt, the

resulting value ID′ should equal IDt. Therefore, tag t also

authenticates the reader at the end of this process. The pseudo

code of the tag singulation process is provided in Algorithm 4.

Example of Authentication An example of the mutual au-

thentication is shown in Figure 4. Assume that the key issuing

is complete as shown in Figure 3. The reply from tag consists

of
α = v6 (4)

β1 = H(gk5||rt||rr), E(gk5, 4) (5)

β2 = H(gk0||rt||rr), E(gk0, 6) (6)

γ = IDt ⊕ F (0||skt||3||rt||rr). (7)

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

38



Algorithm 5 KeyUpdate(T , {v0, vi, ..., vng
})

1: /* Key update at the reader’s side */
2: for i from 1 to ng do
3: vi.old gk ← vi.gk
4: vi.old gk ← H(r, vi.gk), where r is a random number.
5: /* Upon singulation of tag t */
6: Allocate t to vi associated with no other tag.
7: vi.sk ← H(r, vi.sk), where r is a random number.
8: Run Algorithm 1 (Lines from 5 to 15).

Starting from v6, the reader finds the corresponding node

v5 to β1.hash and moves the pointer to v5. Then, the

pointer moves toward the left by 4, which information is

obtained by decrypting β1.num. This process is applied to

β2 and γ. After identifying tag t, the reader sends π =
IDt ⊕ F (1||v3.sk||rt||rr). On receiving π, tag t computes

π⊕F (1||skt||rt||rr), which results in IDt. By doing this, tag

t also authenticates the reader.

F. Key Updating

Our approach is the mix of the key updating mechanisms

in SPA [5] and RSLA [10]. Group keys shared among several

tags, and therefore, the reader must keep old group keys until

all the tags associated with these old keys update their keys.

Thus, the proposed key updating first renews all the group keys

in the k-neighbor graph, and the keys at tags’ side are updated

when they are singulated. On the other hand, unique keys are

never shared among tags. This implies that the reader does not

need to maintain old unique keys. Therefore, the unique key

at a tag can be updated when the reader interrogates the tag,

and the old unique key can be immediately discarded after key

updating.

The proposed key updating works as follows. A new key

at each node vi in the k-neighbor graph is computed using

a one-way hash function, and the old group keys are kept in

vi.old gk. That is, for 1 ≤ i ≤ ng , vi.old gk ← vi.gk and

vi.gk ← H(r, vi.gk), where r is a nonce. The value of r is

kept in secret, and so adversaries cannot obtain a new key from

the current key. When the reader singulates tag t, the group

keys are updated. When the old keys become unnecessary,

they are removed from the key structure. At the same time, the

unique key of tag t is renewed by vi.sk ← H(r, vi.gk), where

r is a nonce. Both the old unique key and random number

can be immediately discarded upon key updating. With the

new keys, a unique key, a set of group keys, a set of random

numbers, and the entry point are assigned to tag t as shown

from Lines 5 to 15 in Algorithm 1.

G. System Maintenance

An RFID system should adapt to dynamic environments,

where new tags join to and some old tags leave from the

system. When a tag leaves the system, no modification at the

key structure is required. When a new tag joins the system, the

tag is randomly assigned to one node, which is not associated

with any other tag, in the k-neighbor graph. Then, the keys

are issued to the new tag using Algorithm 1. If no such a

node is available, a new k-neighbor graph with the same size

as the original one is created, and the new tag is randomly

assigned to a node in the new graph. In this case, there

will be more than one set of k-neighbor graphs for the key

structure. This causes the reader to scan 2k nodes at the first

component of tag’s reply, i.e., β1, in the authentication phase.

Since the additional computation cost for the reader in the

singulation process is up to k, the authentication efficiency

remains the same as the original KNGA in the asymptotic

order. In addition, by creating a new k-neighbor graph, the

system can accommodate twice the number of tags as the

original. We believe the number of tags rarely increases more

than twice from the original number of tags during online

process, which is a relatively short period. On the other hand,

in a long-term period, the number of tags could grow more

than twice, but this can be handled by reconstructing the whole

key structure off-line.

H. Considerations on Parameter Selection

The system parameters in this paper include the balancing

factor k, the number of tags n, the number of group keys ng ,

and the number of group keys m that each tag stores. How

these parameters are set plays a critical role for both security

and performance. As a rule of thumb, the greater values of ng

and m are, the higher degree of privacy can be achieved. In

the performance aspect, the values of n and m determine the

authentication speed. Here, the number of tags n is provided

by an application and is not tunable. As n ≤ ng = km+1 must

hold, the values of m and k dominate the system parameters.

Note that the value of k does not affect the performance in

the asymptotic order. Since our primary goal is to improve the

privacy degree, the value of m should be maximized as long

as the tag’s memory is dedicated to the security mechanism.

While the value of m is limited due to the low cost design of

passive tags, we claim that KNGA is still scalable. In general,

the key length in passive tags is set to be 32-bit. A random

number for shifting as well as an entry point can be encoded

into a 32-bit string as long as ng ≤ 232. To be specific, when

m = 7 and k = 16, a memory space of 512 bits is required to

store one unique, 7 group keys, 7 random numbers, and one

entry point. Therefore, up to 232 tags can be supported in such

an RFID system, which is sufficiently large enough for most

of the real world RFID applications.

VI. QUANTITATIVE SECURITY ANALYSIS

A. The Correlation Probability Analysis

We first prove that the proposed KNGA protocol achieves

the performance bound of the weak privacy.

Lemma 1 Given compromised tag t and uncompromised tag

t′, they are indistinguishable as long as GKt 6= GKt′ , where

GKt = {gk1, gk2, ..., gkm} and GKt′ = {gk
′
1, gk

′
2, ..., gk

′
m}.

Proof: The proof is trivial, and thus is omitted.

Lemma 2 For given ng and nt, The correlation probability

of KNGA is
∏m

i=1
m−i+1
ng−i+1 .

Proof: Let GKt = {gk1, gk2, ..., gkm} and GKt′ =
{gk′1, gk

′
2, ..., gk

′
m} be the set of group keys that tag t and t′
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store, respectively. According to Lemma 1, t and t′ are never

linked unless GKt = GKt′ . We have Pr[∃gki ∈ GKt′ |gk1 =
gki] =

m
ng

, Pr[∃gki ∈ {GKt′ −gk1}|gk2 = gki] =
m−1
ng−1 , and

so on. Thus, the correlation probability of KNGA is obtained

by

Pr[GKt = GKt′ |KNGA] =

m
∏

i=1

m− i+ 1

ng − i+ 1
, (8)

This concludes the proof.

We reach the following conclusion.

Theorem 3 The proposed KNGA achieves the performance

bound of the weak privacy.

Proof: From Lemma 2, KNGA has the same correlation

probability as the performance bound of the weak privacy

shown in Equation 1. Therefore, the above claim is true. This

concludes the proof.

B. Extended Anonymity

When some tags are physically compromised, the degree

of privacy of the other tags may decrease. To quantify this,

anonymity is widely used as a privacy metric against the

compromise attack. In this paper, we extend the definition

of anonymity in [9], [10] by excluding the anonymity of

compromised tags. Note that the anonymity of compromised

tags is always 0, as they are identified with 100% probability.

By doing this, our anonymity definition clarifies the difference

between the strong and weak privacy models. That is, no

matter what portion of tags is compromised, the degree of

anonymity, denoted by A, always equals to 1 in the strong

privacy model. In the weak privacy model, the degree of

anonymity of uncompromised tag ranges 0 ≤ A ≤ 1. We

define an extended anonymity as follows.

A =
1

n− nc

∑

i

|Si| ·
|Si|

n− nc

(9)

Here, Si is an anonymous set in which subjects are distin-

guishable from each other. When no tag is compromised, all

the tags belong to the same anonymous set, say S1. Hence,

|S1| = n and A = 1 hold. If some tags are compromised, the

tags are divided into disjoint sets with each |Si| being smaller

than n− nc, where nc is the number of compromised tags

Equation 9 is conceptually defined by the observation as

follows. The degree of ambiguity of an anonymous set, say

Si, with respect to the number of uncompromied tags in the

system is formulated by
|Si|

n−nc
. Since there are |Si| tags in the

set, the degree of ambiguity can be weighted by multiplying

|Si|. After computing the summation of the ambiguity of each

anonymous set, the average anonymity of each uncompro-

mised tag is computed by multiplying 1
n−nc

.

C. Anonymity Analysis

We formulate the expected anonymity when c (0 ≤ nc ≤
n − 1) tags are compromised. Let Tc (where |Tc| = nc) be

a set of compromised tags, and c be the average number of

compromised tags located at neighbors of each node. Note

that the average value of c is obtained by knc

n
, because

the compromised tags are randomly selected, and such a

distribution is known to follow the Binomial distribution. We

define s(t) as a mapping function from tag t to its anonymous

set Si, i.e., s : t→ P(T −Tc)∪{t}, where P(.) is the power

set. The anonymous set size of s(t′) will be either one of the

following three cases.

Case 1: If ∀t ∈ Tc, GKt 6= GKt′ , then |s(t′)| = n− nc.

Case 2: If ∃t ∈ Tc, s.t. GKt = GKt′ and rnm = rn′
m, then

|s(t′)| = k − c.

Case 3: If ∃t ∈ Tc, s.t. GKt = GKt′ and rnm 6= rn′
m, then

|s(t′)| = n− k − nc + c.

When an authentication protocol achieves strong privacy,

two tags are never linked, i.e., GKt 6= GKt′ always holds.

Thus, cases 2 and 3 never occur, and the resulting anonymity

equals to 1, no matter what the value of nc is. In the weak

privacy model, the anonymity can be smaller than 1, since

compromising some tags results in smaller anonymous set

size of the uncompromised tags as indicated by cases 2 and

3. Different protocols have different Pr[GKt = GKt′ ]. The

proposed KNGA keeps maximal achievable anonymity by

minimizing the probability of GKt = GKt′ .

We derive the expected average anonymity of uncompro-

mised tags as follows. Let us denote ρ =
∏m

i
m−i+1
ng−i+1 by the

lower bound of the correlation probability in Equation 1. The

probabilities of cases 1, 2, and 3 occurring are given by

p1 = Pr[Case 1] = (1− ρ)
nc (10)

p2 = Pr[Case 2] = 1−

(

1−
ρ

ng

)nc

(11)

p3 = Pr[Case 3] = 1−

(

1−
ρ(ng − 1)

ng

)nc

. (12)

Therefore, we can derive the expected average anonymity

of uncompromised tags by

E[A] = p1(n− nc)+p2k
(

1−
nc

n

)

+ p3

(

n−k−nc+k
nc

n

)

.

(13)

Equation 13 can be simplified as follows. Since ρ is a very

small value, ρ/ng ≈ 0 for a large ng . This makes p2 ≈ 0 in

Equation 11. Also, (ng − 1)/ng ≈ 1 for a large ng , and thus,

we can say p′3 ≈ 1− (1− ρ)nc in Equation 12. Therefore, the

expected anonymity can be approximated by

E[A] ≈ p1(n− nc) + p′3

(

n− k − nc + k
nc

n

)

. (14)

VII. PERFORMANCE EVALUATION

The performance of the proposed KNGA is evaluated using

simulations by comparing with the tree-based [4], AnonPri [9],

RSLA [10], and RSGA [11].

A. Simulation Configurations

In the simulations, the RFID system is composed of one

RF reader and a number of RF tags ranging from 28 to 214.

During an interrogation process, randomly selected nc (0 ≤
nc ≤ 2048) tags are considered as being compromised.

The parameters for each of the protocols are set to be as

follows. For the tree-based, RSLA, RSGA, and KNGA, the

balancing factor k is set to be either 2, 4, 8, or 16. For fair
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Fig. 5. Anonymity with k = 2.
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Fig. 6. Anonymity with k = 16.
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Fig. 7. Anonymity with nc = 1024.
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Fig. 8. Anonymity with nc = 2048.
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Fig. 10. The key storage cost.

comparison, the number of group keys at each node is set to

be m = ⌈logk n⌉−1. In AnonPri, tags are divided into disjoint

groups with size of 64. The number of pseudo ID pool and

the number of keys that each tag stores are set to be 1000 and

10, respectively.

Anonymity defined in Section VI-B is used as the privacy

metric. Randomly selected nc tags are compromised, and then,

the anonymity of the other tags is computed. As the perfor-

mance metrics, the authentication speed is employed, which

is defined as the number of computations of the hash and

encryption functions. The number of group and unique keys

at the server side are counted as the key storage cost. For each

configuration, 1000 simulation experiments are conducted.

B. Simulation Results

Figures 5 and 6 show the anonymity for different protocols

with respect to the number of compromised tags, where the

number of nodes is 4096 and the balancing factor is k = 2 for

Figure 5 and k = 16 for Figure 6. As can be seen in Figure 5,

the introduction of random walks (i.e., RSLA, RSGA, and

KNGA) outperforms the other protocols. The anonymity of

RSLA significantly drops at nc = 1024 (12.5% of tags

are compromised), and that of RSGA significantly drops at

nc = 2048 (50% of tags are compromised). On the other

hand, the proposed KNGA still keeps high anonymity even

in the case that a large portion of tags are compromised. This

trend becomes clearer when k = 16 as shown in Figure 6. The

number of group keys at each tag is m = ⌈log16 4096⌉−1 = 2.

Thus, the probability of two tags being correlated is much

higher than the case of k = 2. Nevertheless, our KNGA

maintains high anonymity even when nc = 2048.

Figures 7 and 8 illustrate the anonymity for different pro-

tocols with respect to the balancing factor k. In these figures,

the number of nodes is set to be 4096 and the number of

compromised nodes is nc = 1024 for Figure 7 and nc = 2048
for Figure 8. As a rule of thumb, each tag stores fewer group

keys when the balancing factor k increases. This is because the

system can support up to km+1 nodes for the given number

of group keys m and the balancing factor k. Therefore, the

probability of two tags being correlated increases, as the value

of k increases. In Figure 7, where nc = 1024, KNGA and

RSGA maintain high anonymity for k = 16. On the other

hand, as shown in Figure 8, where nc = 2048, the anonymity

of KNGA is higher than that of RSGA by 10% for k = 16.

Figure 9 presents the authentication time for different pro-

tocols with respect to the number of tags in the system. The

authentication by AnonPri takes a longer time, as the number

of tags increases. Since the other protocols run in logarithmic

order, the authentication speed is relatively stable. Compared

with the original tree-based protocol, RSLA, RSGA, and

KNGA slightly incur more computation cost. This is because

decryption functions must be applied to a tag’s reply for

random walks.

Figure 10 provides the key storage cost at the server side

for different protocols with respect to the number of tags

in the system. For the tree-based, AnonPri, and RSLA, the

key storage cost is dominated by the number of tags in the

system. The key structure of both RSGA and KNGA have

n(⌈logk n⌉ − 1) internal nodes, and thus, they incur more

storage cost. In addition, each node in the k-neighbor graph

of KNGA must store a dummy unique key even when no tag

is assigned to it. This is why KNGA incurs more storage cost.

However, we stress that the key storage cost at server side is

not a significant issue, and the storage cost at tags’ side in

KNGA remains the same as the existing solutions.

VIII. CONCLUSIONS

Although the existing structured key-based private protocols

for quickly and securely interrogating tags in large-scale RFID

systems are known to achieve weak privacy, the theoretical

bound is still unknown. In this paper, we first derive the

lower bound of the correlation probability with respect to the

number of group keys in the system. Then, we propose the k-

neighbor graph-based authentication (KNGA) protocol, where

the reader singulates individual tags by randomly walking over

a k-neighbor graph. Our analysis shows that the proposed

KNGA achieves the performance bound of structured key-

based authentication, and the extended anonymity is quantified

as the degree of privacy of uncompromised tags. The simula-

tion results demonstrate that the proposed KNGA outperforms

the existing solutions.
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