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Abstract—Crowdsensing, driven by the proliferation of sensor-
rich mobile devices, has emerged as a promising data sensing and
aggregation paradigm. Despite useful, traditional crowdsensing
systems typically rely on a centralized third-party platform for
data collection and processing, which leads to concerns like
single point of failure and lack of operation transparency. Such
centralization hinders the wide adoption of crowdsensing by wary
participants. We therefore explore an alternative design space of
building crowdsensing systems atop the emerging decentralized
blockchain technology. While enjoying the benefits brought by
the public blockchain, we endeavor to achieve a consolidated
set of desirable security properties with a proper choreography
of latest techniques and our customized designs. We allow data
providers to safely contribute data to the transparent blockchain
with the confidentiality guarantee on individual data and differ-
ential privacy on the aggregation result. Meanwhile, we ensure
the service correctness of data aggregation and sanitization
by delicately employing hardware-assisted transparent enclave.
Furthermore, we maintain the robustness of our system against
faulty data providers that submit invalid data, with a customized
zero-knowledge range proof scheme. The experiment results
demonstrate the high efficiency of our designs on both mobile
client and SGX-enabled server, as well as reasonable on-chain
monetary cost of running our task contract on Ethereum.

Index Terms—Blockchain, Smart Contract, Crowdsensing,
Data Confidentiality, Differential Privacy, Trusted Hardware,
Zero-Knowledge Proof

I. INTRODUCTION

Combining the crowd intelligence and the sensing power of
mobile devices, crowdsensing systems are very useful for a
wide spectrum of people-centric and IoT applications such as
environmental monitoring, healthcare and smart transportation
[1]. Traditional crowdsensing systems typically rely on a
centralized third-party platform [2], [3] for managing tasks
and matching participants with aligned interests. Such cen-
tralized architecture often suffers single point of failure and
lack operation transparency [4], [5], hence discouraging the
widespread adoption by wary users.

There is thus a pressing need to explore an alternative design
space of building crowdsensing systems atop more open and
decentralized infrastructure. The emerging blockchain technol-
ogy comes as an ideal starting point. A blockchain (or simply
“chain”) is a distributed and immutable data structure governed
by a consensus algorithm run over a network. Data records
(aka transactions) are assembled into blocks and appended to
the chain by specialized nodes known as miners or proposers,
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and validated by the rest of the network to achieve consensus.
The recent advancement allows running expressive program,
so-called smart contract, on the chain, thereby giving rise to a
myriad of compelling applications. In particular, we consider a
public blockchain where all on-chain data is replicated across
the network and publicly visible. Basing the crowdsensing sys-
tem on public blockchain alleviates the concerns of traditional
approach and gains the additional benefits of eliminated trust,
lowered barrier to entry, as well as streamlined implementation
of incentive mechanism. Such open and decentralized setting,
however, also raises new critical issues.

Of the utmost importance is the need for data confidentiality.
As the participant’s data may contain sensitive information
like health metrics and geographic locations [1], it is not
supposed to be directly exposed to the transparent blockchain.
Such requirement is resonated with the increasingly strict legal
regulation on personal data privacy such as the EU General
Data Protection Regulation (GDPR) [6]. Intuitively, we should
allow participants to submit encrypted data and maintain data
secrecy throughout the lifetime of the crowdsensing task. A
few prior works [4], [5] have attempted to encrypt individual’s
data with the data requester’s public key before submitting to
the chain. But this approach allows the potentially malicious
requester to obtain the data in clear, and so it is not practically
acceptable and not compliant with GDPR.

In addition to data confidentiality, endowing the aggregation
result with differential privacy by adding calibrated noise is
highly desirable [7]. With such property, participants are more
confident in contributing data as that will not increase their risk
of privacy breach caused by sophisticated statistical attacks.
However, deploying such a mechanism on public blockchain
is non-trivial. Were the noise to be added by the smart contract,
anyone can remove it without effort.

While the requester that initiates a crowdsensing task is
conventionally regarded as a primary source of threat, we
should as well deal with the trustworthiness issue of the
massive participants. In the open setting, they are more likely
to commit wrongdoing out of greed, malice, or other un-
foreseeable reasons. For example, a faulty participant may
submit invalid data, say a distance measurement of 500 meters
although the permitted value lies between 0 and 100 meters.
This can seriously pollute the aggregation result. Such a threat
has received growing attention in recent years [8] and should
be addressed satisfactorily. A particular challenge is that we
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have to detect such faulty participants without compromising
data confidentiality, which normally requires dedicated design.

In light of the above observations, in this paper, we present
our research endeavors towards a blockchain-powered crowd-
sensing framework which ambitiously provides data confiden-
tiality, differential privacy, service correctness, and robustness.
At a high level, our framework allows a data consumer to
post a crowdsensing task in the form of smart contract on a
public blockchain. To earn reward from the task, data providers
can contribute data and a service provider can contribute data
aggregation and sanitization service, all via the task contract.

We start with the protection of data providers. The goal
is to make sure that individual data provider’s data is never
disclosed to any other party throughout the lifespan of the task.
To achieve the goal while enabling aggregation in encrypted
domain, we leverage an additive homomorphic cryptosystem,
and in particular a threshold version of it. The encryption of
data is done by data providers with the public key, yet the
decryption is only made possible by the cooperation between
the consumer and service provider. The service provider is
supposed to aggregate the encrypted submission from all data
providers, add to it a random noise for differential privacy,
and generate a decryption share to be passed to the consumer.
The latter can finally obtain a noisy aggregate.

Next, we consider the trustworthiness of the two types of
providers. Despite the reliance on the service provider, we do
not put any trust on it. To ensure the correctness of provisioned
services, we use a transparent enclave [9] hosted by the service
provider to conduct data aggregation and sanitization. The
enclave has a trust rooted on hardware (e.g., CPU) and is only
trusted for integrity but not confidentiality. Our conservative
use of secure enclave technology prevents us from running
into the troubles of handling various side-channel attacks. We
instantiate the design with Intel SGX.

To detect in a privacy-preserving manner faulty data
providers who submit out-of-range data, we turn to the tech-
nique of zero-knowledge proof (ZKP). Since existing schemes
do not readily suit our use, we devise a customized range proof
based on a state-of-the-art system [10]. In particular, we design
a bridging construction to establish the equality between the
committed data, which is used by [10], and our encrypted
data. So, the validity of the former implies the validity of the
latter, giving the desired range proof. Now, each data provider
should attach to its submission such a proof for verification.
All faulty ones will be ruled out from the task.

We have implemented system prototypes and conducted
extensive experiments to understand the practical performance
of our designs. The off-chain computation is very efficient:
well within 300ms for an ordinary mobile client to prepare a
submission, and only 20s for an SGX-enabled service provider
to process data from 1000 data providers. The on-chain mon-
etary cost is also reasonable, i.e., 170 USD for a task of size
1000 as of Sep 29th, 2018. Finally, the intensively estimated
transaction time demonstrates that the overall performance of
our system is only capped by the underlying blockchain.

II. PRELIMINARIES

Blockchain and smart contract. We follow the blockchain
model in [11] with relevant features outlined below.

First, each blockchain user is identified by its public key.
We denote a user by P. Signed by the paired private key,
all messages sent to the chain from 7 are authenticated. A
dictionary ledger[P] maps each user P to her balance. Money
transfer between users occurs as changes of ledger entries.
A smart contract is deployed on the chain with predefined
callable functions. A user can send a message “foo” to a
deployed contract to execute a function. Such function call
is wrapped into a transaction and recorded on the chain.

Differential privacy. A typical method to achieve differential
privacy is to add calibrated random noise to the statistics
before releasing them [7]. Since our scheme works on discret
groups, following prior art [12], we sample noise from a
geometric distribution Geom(a), where v > 1 is the parameter
and the probability mass function at z is 3—:& ca

Paillier Cryptosystem. This is a classic public cryptosystem
with additive homomorphic property. The encryption algo-
rithm works as Enc(m,r) = g™ mod N2, where m is the
message to encrypt, r is a random element in Z%, and (g, N)
is public key. For brevity we omit r and denote the encryption
simply as Enc(m). The decryption Dec(m) can be done
efficiently with the factorization of N and we ignore the details
here. Given two ciphertexts for m; and msy, we can compute
Enc(my + ma) by Enc(my) - Enc(mg) = g™ ™2 (1) V.
In a (k,n)-threshold version of Paillier cryptosystem [13],
successful decryption requires the cooperation of at least &
out of n parties. Each of them can compute a decryption
share with its own private key share. Once a party collects
k decryption shares, it can combine them to produce the
plaintext. We denote Dec, as the algorithm for computing
decryption share by party p, and Dec as the algorithm that
combines decryption shares to recover the plaintext.

III. SYSTEM OVERVIEW

We are after a scenario where a data consumer can purchase
a noisy (approximate) aggregate of data from the crowd via
an open blockchain platform. We want to make sure that
throughout the process, no information about the individual
data is leaked or can be ever inferred from the aggregate
statistics. In addition, since the aggregate itself is a valuable
asset purchased by the consumer, it should only be obtained
by the consumer but no one else. In this paper, we particularly
consider the popular sum statistic [8], [12], which has many
practical applications. For instance, a medical company can
use our platform to query the number of people with certain
disease from some population, where the submitted data is a
single bit encoding yes/no answer.

A. System Architecture

There are four logical parties in our system, as shown in
Fig. 1. The blockchain platform serves as a hub to bridge
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Fig. 1. System architecture.

the other three parties. The data consumer initiates crowd-
sensing tasks in the form of smart contract bearing monetary
reward. After registration, data providers can submit data to
the contract. To harden individual privacy and enforce legal
compliance [6], a service provider is also solicited to the
task and contribute professional data sanitization (perturbation)
service. Once the data is properly aggregated and sanitized, the
data consumer indicates his approval of the result, upon which
all providers can claim reward from the contract.

To protect data privacy while allowing aggregation directly
over the encrypted data, we will use additive homomorphic
encryption. In particular, we split the decryption key between
the consumer and service provider, such that it is impossible
for either one of them to decrypt individual data alone. To
further achieve differential privacy [7], we will perturb the
aggregation result. But who should do the perturbation? Cer-
tainly not the consumer itself. Nor the smart contract — due to
its transparency, the consumer can easily remove the noise. We
therefore engage the service provider for this particular task.
Now, the consumer is only able to obtain an noisy aggregate.
Note that the service provider is never designated a priori as
in centralized settings; instead, it is openly solicited from the
wild on a per-task basis.

We need to make sure that the service is correctly pro-
visioned. A malicious or compromised service provider may
censor data submissions, inject fake data at will, or adding
inadequate noise. While there exist cryptographic schemes for
generic verifiable computation [14], the trending practice is
to employ hardware-assisted trusted execution environment
(TEE) such as Intel SGX [15]. We follow the trend but only
make conservative use of the TEE technique to enforce the
correct behavior of service provider. In particular, we will
use a transparent enclave (introduced later) to shield the data
aggregation and sanitization process at the service provider.

While we strive to protect their privacy, we do not want
misbehaving data providers to spoil the aggregation result.
A task expecting small positive values may be marred by a
single data provider who submits a large negative number.
It is therefore of vital importance to ensure the robustness
of our system in the presence of wrongdoing data providers.
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In particular, we would like each of them to submit along
with the encrypted data a validity proof, which attests that
the underlying data lies in a valid range without reveal it.
By verifying the proofs, the wrongdoers can be identified and
discarded. The technique we need falls in the general notion
of zero-knowledge proof (ZKP). For better efficiency, we will
develop a new construction by synergizing a state-of-the-art
proof system with a customized bridging proof.

Remark on service provider. We follow the canonical
approach to differential privacy: the noise is added to the
aggregation over individuals (resp. data providers) by a data
curator (resp. service provider) [16]. This presumes trust in
the curator. Recently, local differential privacy (LDP), a new
approach that entitles individuals to directly perturb their data
before submission while retaining theoretical data utility, has
gained some traction [17], [18]. The individual privacy can
be protected against the untrusted curator if sufficient noise
is added. It seems that by applying LDP to our scenario, the
data providers can just submit their perturbed data and the
consumer still obtains perturbed aggregate only, without the
need for an extra service provider.

Despite being appealing, however, LDP suffers from an
inherent tension between privacy and utility. The aggregate
statistics will accumulate too much noise to be useful —
otherwise in order to obtain clear a signal from the perturbed
data, prohibitively large number of users are needed, as
practically confirmed by [19] in their real operation of the
deployed system [17]. Moreover, LDP typically requires ad
hoc and more complicated perturbation mechanisms that are
worth intensive research [19]. Effective realization of LDP is
still an active research direction. Thus, we refrain ourselves
from such plausible option and stick to the canonical approach
that embraces the inclusion of additional service provider.

B. Threat Assumptions

We state our threat assumptions by elaborating what each
party may do for its own interest.

First of all, the blockchain as the underlying platform is
trusted for integrity and availability, but not confidentiality.
Running on top of it, the smart contract is guaranteed to work
as specified, free from tampering. Once it is deployed, the
code is visible and checkable by anyone. Likewise, any data
submitted and stored to the contract can be directly read by
all parties in our system, plus any others having access to the
blockchain. Note that our system inherits the vulnerabilities
of the underlying blockchain, for example 51% attack against
PoW chain and eclipse attack [20] against the P2P network;
they are considered out of scope.

We consider a data consumer who is primarily interested in
the aggregate statistics from the crowds. Yet, it also attempts
to infer individual data for additional benefits, e.g., improving
targeted advertising or reselling data for profit. It may do so
through arbitrary inference technique.

The service provider may be curious about the individual
data and their aggregate, just like the consumer. Moreover,
it may arbitrarily deviate from the intended function, for
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example aggregating submitted data or adding noise correctly.
We assume that the data consumer does not collude with the
service provider. The collusion between the two can easily
compromise data confidentiality and individual privacy.

We do not exclude the data providers from our threat
model. In particular, they may submit out-of-range data, due to
malice, misconfiguration, or software bugs. Note that similar
to existing literature [8], we do not prevent a sophisticated data
provider from submitting legitimate yet untruthful data, e.g.,
reporting a salary 2000 despite the true value being 3000 given
a valid range [1000, 5000]. Such issue is hardly surmountable
without combining alternative solution like economically in-
centivized mechanism design [21]. Furthermore, we do not
consider sybil attack, which in our context means that a single
data provider creates multiple fake devices or IDs to for mul-
tiple submissions. Sybil attack can be orthogonally addressed
for example by the authentication of physical device [22].

Finally, we assume pairwise authenticated channels between
all parties, including the smart contract [23]. These channels
are not necessarily encrypted.

C. Security Goals

In response to the threat assumptions above, we summarize
below four core security goals we seek to achieve.

« Data confidentiality: Individual data provider’s data is
never disclosed on the blockchain, to the service provider
and data consumer, and throughout the whole task.

« Differential privacy: The data consumer only obtains
a noisy (differentially private) aggregate from data
providers, so their presence causes no privacy breach.

« Service correctness: The aggregation is guaranteed to be
performed over all submitted data, and the added noise
is guaranteed to be drawn from correct distribution.

« Robustness: Any out-of-range data submission will be
detected and rejected by the system, without breaking
data confidentiality and differential privacy above.

IV. BASELINE PROTOCOL

We first consider a simplistic scenario where all data
providers submit valid data, and the service provider is semi-
honest [24]-[26] (i.e., it performs aggregation and sanitization
honestly while being curious about the plaintext data). We
will introduce a baseline protocol that depicts the interactions
among parties and lays the foundation for our subsequent
designs. Based on threshold Paillier cryptosystem, the base-
line protocol achieves the desired data confidentiality and
differential privacy. In next sections, we will present two
refinements to the baseline protocol progressively, with the
first addressing service correctness and the second tackling
the more challenging robustness issue.

A. Design Rationale

The blockchain platform plays a central role in our design.
It serves as the main ground for recording important protocol
transcripts, and for other parties to indirectly interact with
each other. For privacy protection, data providers must encrypt

their data before submission. To enable direct aggregation over
encrypted data, we want the encryption scheme to exhibit
some homomorphic property. There are yet three intuitive
requirements to be met: 1) no one can see individual data in
clear except its owner; 2) no one can get the exact aggregate;
3) only the data consumer can get the noisy aggregate.

We observe that these requirements can be simultaneously
fulfilled by (2,2)-threshold Paillier cryptosystem. The idea is
as follows. We split the decryption key between the consumer
and the service provider. Then, with a single key share, neither
of them alone is not able to decrypt individual data stored on
the chain. We let the service provider to do the aggregation
and sanitization in encrypted domain, producing a decryption
share of the noisy aggregate. Although the service provider
knows the added noise, it learns nothing about the underlying
aggregate. Given the decryption share, the data consumer can
generate the other share and combine the two to obtain the
noisy aggregate in plaintext, without learning the noise.

B. Protocol Details

Our protocol is centered around a smart contract modeled
as a state machine, as shown in Fig. 2. A timer is set in each
state to ensure that the task can abort upon the failure of state
transition, e.g., certain condition is never met by the off-chain
parties. The timer is not explicitly shown for brevity. Note
that to ensure fairness upon task abortion, some initial deposit
is required for each party. It is straightforward to implement
such mechanism in the contract, so we also omit the details.

We divide the protocol into the following five stages:

1) Solicitation: the data consumer C deploys a crowdsens-
ing contract and sends a “solicit” message to it, calling
for data and service contribution. Interested participants
can register themselves to the contract. Hereafter, we
assume that the registration contains necessary informa-
tion for them to reach each other. At the end of this
stage, the contract should record n data providers and
one service provider. After that, the contract transits to
the next state where no more participation is allowed.

2) Key setup: C and the registered service provider &
run a distributed key generation algorithm of Paillier
cryptosystem [27]. Each of them will end up with a
secret key share; the public key is broadcast to all data
providers. Note that this stage is not reflected in the
contract as the parties only read states from the contract
(by “get-state” message). Alternatively, the public key
can be recorded to the contract.

3) Secure Submission: each D; submits d; = Enc(z;) to
the contract, where x; is its input data. We prevent
one trivially copying the submission from others, by
filtering out identical d;s. Note that even if x; = x;, we
have d; # d; for the randomized encryption. The other
term ¢; in the submission intends to be a cryptographic
proof that x; is in certain interval, the use of which will
become clear later. The last submission from the n data
providers will trigger the contract to transit to next state.
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Contract DPCS

On receive (“solicit”, $Data, $Srvc, param) from C
assert st = L;set D=0, S:=0;
parse param as n and other necessary parameters (see Section V,VI)
assert ledger[C] > ($Data + $Srvc)
set ledger[C] := ledger[C] — $Data — $Srvc
set st := SOLICITATING
M = {(“solicit”, C, $Data, $Srvc, n)};

On receive (“register”, role) from 7
assert st = SOLICITATING and P has not called “register” before
if role = DATA: D[P] :=_ ; else S :== P
if |[D| =n and S # 0:
set st := SUBMITTING
broadcast “registered”

/l “_” is a placeholder

// e.g., by Event mechanism on Ethereum

On receive (“submit”, d;, ¢;) from D;
assert st = SUBMITTING, D; has not called “submit” before
assert D; is in D and d; is not found in D
D[D;] :== (di, ¢;); M :== M U {(*“submit”, D;)}

if D contains no “_:
set st := AGGREGATING; broadcast “submitted”

On receive (“aggregate”, d, [a]s, o) from S
assert st = AGGREGATING and S = S
M = M U {(“aggregate”, S, a, [a]s,0)}
set st := APPROVING; broadcast “aggregated”

On receive (“approve”) from C
assert st = APPROVING
M = M U {(“approve”,C)}
set st := CLAIMING; broadcast “approved”

On receive (“claim”) from P
assert st = CLAIMING and 7P has not called “claim” before
if P isin D:
ledger[P] := ledger[P] + $Data/n
else if P = S:
ledger[P] := ledger[P] + $Srvc
M = M U {(“claim”, P)}
if all Ps in D and S have called “claim”: set st := DONE

On receive (“get-state”) from P: send (st, M, D, S) to P

Fig. 2. The smart contract functionality for the crowdsending task, initiated
by data consumer. The contract is modeled as a state machine. Note that here
we do not enumerate all functions in the real contract.

4) Noisy aggregation: S collects all d;s from the contract
and computes the noisy aggregation
n n
a = Enc(y+ Zwl) = Enc(v) - Hdi’
i=1 i=1
where v ~ Geom(«) is a random noise sampled from
geometric distribution with parameter . S then gen-
erates its decryption share [a];, = Decs(a) and sends
(@, [a]s) to the contract. This will move the contract to
next state. Note that there is also another term o in the
“aggregate” message; it is an attestation to S’s correct
behavior, and can be ignored at this moment.

5) Finalization: C fetches (a,[a]s) from the contract. It
computes its own decryption share [a]. = Dec(a) and
gets the final noisy sum Dec([a]s, [@].). C then sends an
“approve” message to the contract, allowing D;s and S
to claim rewards from the contract.

Security guarantees. The desired data confidentiality follows
from the security of threshold Paillier cryptosystem. And the
differential privacy achieved with the added geometric noise.
Due to space limit, we omit the detailed security analysis.

V. REFINEMENT I: ENFORCING SERVICE CORRECTNESS

Previously, we assume that the service provider is semi-
honest. Now we want to relax such assumption and make sure
that a malicious service provider must follow our protocol
correctly, despite being able to see all data sent to it. We
achieve this goal with a primitive called transparent enclave.

A. Transparent Enclave

Due to its performance and functionality advantage,
hardware-assisted trusted execution environment (TEE) such
as Intel SGX has been widely adopted to build secure systems.
It typically creates an isolated secure enclave for running
security-critical program with confidentiality and integrity
guarantee. Despite promising, the privacy of secure enclave
can be broken by a wide spectrum of side-channel attacks [28].
While some countermeasures have been proposed [29], how
to fully address these threats without affecting performance or
incurring new security flaws remains an area of active research.

Recently, Tramer et al. [9] introduced the notion of trans-
parent enclave, which promises the integrity of code and data
while doing away with confidentiality. An enclaved program
is guaranteed to be tamper-free, but all its internal states are
leaked to the potentially malicious host platform. Transparent
enclave only requires a secret attestation key fused in the
hardware to remain secure against adversaries. Let £ be an
existentially unforgeable signature scheme, and (skrg, pkTg)
be the attestation key pair. Then, the enclave can attest to
the output out of a program prog on input inp, by generating
an attestation (signature) o = X.Sign(sktg, inp, prog, out). If
Y Veri(pkte, 0, inp, prog, out) returns true, we can be assured
that the intended execution is correct.

B. Our Refined Protocol

To ensure the correctness of data aggregation and sanitiza-
tion, we require the service to be provisioned via an enclave
hosted by the service provider. Our trust is now anchored to
the enclave, which shields the service against the malicious
or compromised service provider. Note that if a fully secure
enclave is to be adopted, then there seems no need for the
use of homomorphic encryption: the data providers can just
encrypt data with standard symmetric encryption and share
keys with the enclave, which can decrypt the ciphertexts and
do all necessary processing. Given the real concern on the
broken privacy of secure enclave and the non-trivial fixing
efforts, however, we opt to a more conservative use of this
technique and resort to transparent enclave.
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In the refined protocol, S now performs all computation in
noisy aggregation stage within the enclave and attest to its
correctness. Specifically, S needs to generate a valid signature

,dy), NoisyAgg, (a, [a],))

to be included in the “aggregate” message sent to the contract.
Recall that « is the parameter of noise sampling distribution,
d; is the ciphertext of P;, and (&, [a]s) is the encrypted noisy
aggregate and S’s decryption share. The new term NoisyAgg
is the program run by S. In practice, storing the full program
code/image on the contract is cost inefficient, so instead S can
store a hash digest of it and publish the real code off-chain
(e.g., GitHub). The program digest is packed in the param
when C' sends “solicit” to initiate the task (Fig. 2).

Now during the key setup stage of our protocol, S needs
to share the public attestation key pktg to the data consumer
C, besides running the distributed key generation algorithm
of threshold Paillier. Later, C can verify the signature and be
assured that (&, [a]s) are correctly computed.

o = X.Sign(sktg, (param, dy, . ..

Instantiation. Our protocol can use any practical TEE solution
that realizes transparent enclave. As a concrete example, here
we briefly describe the instantiation with SGX, as it has
already been widely integrated into commodity processors.

The SGX platform offers a native attestation service [30].
Upon the launch of an enclave program, the platform will
compute a measurement of the program code and sign it with
the private attestation key fused in the processor. This results
in a signed attestation report sent to a remote verifier, who
can inquire the Intel Attestation Service (IAS) for verification.
After the launch, the program’s integrity is protected by
on-chip security engine that will automatically encrypt and
authenticate the enclave memory. Access to the enclave from
outside will be denied, discouraging malicious tampering.

Back to our context, to participate in the crowdsensing task,
S needs to offer an SGX-enabled platform. It should download
and run the program NoisyAgg in the noisy aggregation stage
of our protocol, and provide an attestation report for the
correct execution. It should also share its credential (licensed
by Intel upon the registration of the SGX platform) with the
data consumer so that the latter can contact IAS to verify the
attestation report before approving the task result.

Security guarantee. The desired service correctness property
hinges upon the transparent enclave’s integrity guarantee and
the signature scheme. Note that we never trust the enclave for
confidentiality. The refined protocol is built on top of the base-
line protocol, so it automatically inherits data confidentiality
and differential privacy guarantee.

VI. REFINEMENT II: ENHANCING ROBUSTNESS

An invalid value submitted by a faulty data provider can
spoil the entire aggregation. We therefore need to check each
data submission and rule out the corrupted ones to maintain
the system’s robustness. This is challenging because the data
is in encrypted domain. A simple checking by disclosure of
the plaintext certainly breaks data confidentiality. To surmount

ZKP of Equality

Let (g1,N), (g2, h2,N) and (g3, h3,p,q) be the public parameters
of Paillier encryption, Fujisaki and Pedersen commitment, respectively.

P computes:
a = Enc(v) = g¥rl¥ mod N2, where r1 +$ Z%
b = Comg(v) = g¥hy? mod N, where ro <$ Z7
¢ = Comp(v) = gyhs® mod p, where 73 +$ Zq
d<—=$ Zoi+2r. /11 is the range parameter, k is a security parameter
z = Enc(d) = g{rl mod N2, where ry <$ Z%
y = Comg(d) = g¢hy” mod N, where ) <$ VAS
z = Comp(d) = g¢h%* mod p, where 7 +$ Zq
e =H(a,b,c,z,y, z)
f=d+ev
Tege =T{ Tz, Tye =€-T2 + Ty, Tze =€-T3 + 72
P—V:a,bc,x,y,z, f, Tze, Tye, Tze
V verifies:
e =H(a,b,c,z,y, z)
0< f < 2l+2k+1
z-af = g{(rze)N mod N2
y - b¢ < ggh;‘“" mod N

?

z-c® = g:,{hg“ mod p
Fig. 3. Our customized zero-knowledge proof of Enc(v), Comg(v) and

Comp(v) pointing to the same underlying v. It is run between a prover P
and verifier V.

this obstacle, we turn to the technique of zero-knowledge
proof (ZKP). Unfortunately, no existing scheme readily fit
our scenario. We thus customize an effective zero-knowledge
scheme specific for proving that the underlying data of a
Paillier ciphertext is in a given range.

A. Zero-knowledge Range Proof and Preliminaries

Range proofs are a type of ZKP to attests that a secret value
falls in a certain interval. Early constructions normally require
trusted setup and large proof size [10]. They do not fit in
our setting where no fully trusted party exists and the proof
size is sensitive to monetary cost. The generic proof system
like zk-SNARKSs [31] has large proof generation cost that is
unfriendly to light client such as mobile device.

Bulletproofs [10]. This is a state-of-the-art non-interactive
zero-knowledge proof system. In particular, it can prove
whether a committed value v is in a certain range, without a
trusted setup and with proof size linear to the input data length.
These features make it especially suitable for blockchain
applications [10]. We will use Bulletproofs as a blackbox,
except that it adopts Pedersen commitment (see below) to
commit the plaintext data. To put it simply, given a value
v and range parameter [, the prover generates a range proof
¥ (v) and a commitment Comp(v), which can be verified by
any one with some public parameters to check whether v is
indeed in [0,2' — 1]. Note that here for simplicity we have
omitted all public parameters of Bulletproofs.

Pedersen commitment [32]. Let p, ¢ be two large primes such
that ¢ divides p — 1, and g be the generator of the order-¢q
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subgroup of Z;. Let h be a random group element such that it
is hard to find the discrete logarithm of g base h or vice versa.
The Pedersen commitment scheme allows committing to a
value v € Z, with randomness r € Z, as Comp(v,7) = g*h"
mod p. We abbreviate it as Comp(v). Pedersen commit-
ment exhibits additive homomorphism: Comp(v; + v2) =
Comp(v1) - Comp(vz) = g**+¥2h™¥"2 mod p. The scheme
is perfectly hiding and computationally binding.

Fujisaki commitment [33]. This is a variant of above scheme.
It works in group Z3 where composite N is an RSA modulus.
Here the group order is unknown, which is critical to our
later use. Given public parameters g, h with above property,
a commitment of integer v € Zy with randomness r € Z},
is computed as Comg(v,r) = g’h” mod N, abbreviated as
Comg(v). Fujisaki commitment is also additive homomorphic.

B. Customized Zero-knowledge Proof of Equality

We want each data provider P; to submit a range proof
along with its encrypted data Enc(x;) to prove that z; is in
a prescribed range. However, directly applying Bulletproof
does not work here, because we do not know whether the
encryption and commitment point to the same underlying data.
For example, a provider can submit Enc(—300) but with range
proof to commitment Com(20). To fix such missing link, we
need another ZKP for proving equality of the encrypted and
committed data. This could be achieved with some classic
Sigma protocols [34]. Here, one subtlety we have to deal with
is, both Paillier encryption and Pedersen commitment work in
group of known order, so there is no way to directly link these
two as the values can always be modified (e.g., by adding
multipliers of the group order). To this end, we adapt the
idea from [35], and “bridge” these two with a commitment
of unknown order, i.e., Fujisaki commitment.

The equality proof now consists of two parts, one between
Paillier encryption and Fujisaki commitment, and the other
between the two commitment schemes. Our construction fol-
lows the commitment-challenge-response paradigm of Sigma
protocol, and we use the Fiat-Shamir heuristic [36] to make
it non-interactive by computing the challenge with a secure
hash function. The full construction is described in Fig. 3,
The completeness, soundness, and zero-knowledgeness of our
construction can be proved in a similar way as [35] in the
random oracle model. We omit the details due to space limit.

C. Our Final Protocol

Now we are ready to obtain our final protocol to achieve
the desired robustness property. In the secure submission stage,
each data provider D; needs to send the compound proof

¢i = (w(le b7 ¢ T,Y,z,¢€, .fa Tzes Tye, Tze)

generated as per Bulletproofs and our equality proof, in the
“submit” message along with the ciphertext Enc(z;). The
service provider S now needs to verify with ¢; that Comp(x;)
indeed opens to a value in valid range, and that Comp(z;)
and Enc(z;) open to the same data (via Comg(z;)), without
knowing the exact value of x;. Note that the verification is also

o 5

S HBulletproof HBulletproof

=300 BPoEq | _,| |WPoEq"
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Fig. 4. The efficiency of data provider evaluated on a mobile phone. Left:
computation time. Right: storage overhead.

run and signed by the transparent enclave, so we are assured
that it is not maliciously tampered with.

Any data that fails to pass the verification will be excluded
from the aggregation and reported to the contract (not shown
in Fig. 2). During the reward claiming phase, only the ones
providing valid data are entitled to claim reward.

VII. IMPLEMENTATION AND EVALUATION

A. Practical Implementation

Data provider on mobile client. We develop a mobile client
for data providers in Java. The main computation undertaken
by a data provider includes encryption and proof generation.
We use open-sourced libraries for threshold Paillier cryptosys-
tem and Bulletproofs. Our customized ZK equality proof is
implemented with the Biglnteger utility from Java.

Service provider with SGX. We prototype the service
provider with Intel SGX SDK in C. Here, we use another
two C libraries for threshold Paillier cryptosystem' and Bul-
letproofs®. Note that porting legacy code to SGX is nontrivial.
In particular, both libraries rely on Gnu GMP for large number
manipulation. Fortunately, the cumbersome GMP library has
been built with SGX in a recent project [37]. Based on that,
we have successfully ported above two cryptographic libraries
to SGX and implemented our equality proof.

Smart contract. We write the task contract in Solidity, the
official programming language of Ethereum. The contract real-
izes all functions outlined in Fig. 2. We additionally implement
the contract in a reusable way, i.e., a new task can reuse
the storage of a completed one, to avoid expensive on-chain
storage allocation. As will be shown later, such optimization
can significantly reduce gas cost. We also allow multiple tasks
to run simultaneously, by separating their states in the contract.
The contract is deployed to the public Kovan Testnet.

B. Performance and Cost Evaluation

Experiment setup. We evaluate the cost and performance of
our protocol with respect to above prototypes from various
aspects. For the mobile client, we install it to a Android phone
with 2.35 GHz CPU and 6GB RAM. For the service provider,

Uhttps://github.com/tiehuis/libhcs

Zhttps://github.com/apoelstra/secp256k1-mw/tree/bulletproofs

3https://kovan.etherscan.io/address/0x2fc45228d916¢33296f673076093b7b
686e055ee
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Fig. 5. The performance of SGX-enabled service provider against varied
number of data providers and range parameter.

we deploy the prototype to a real SGX-enabled workstation
with Intel E3-1505 (2.8GHz) CPU and 16GB RAM.

We set N to 2048 bits for Paillier encryption and Fujisaki
commitment. This will yield 512-byte ciphertext and 256-byte
commitment. The Bulletproofs libraries used by us implement
Pedersen commitment with elliptical curves, which result in
smaller commitment size, i.e., 40 bytes. The security parameter
k used in the equality proof is chosen to be 40, which is
sufficient to mask the data in most real applications [38].

Mobile client efficiency. Since many often the sensing data is
collected and directly submitted from mobile or IoT devices,
we wonder how efficient our protocol can run on them. Specif-
ically, we estimate the computation time and storage overhead
of the data provider’s operations on the aforementioned mobile
phone. The results are presented in Fig. 4, where we vary the
range parameter [ and break down the computation into the
encryption operation and the generation of two proofs.

As shown, our protocol runs efficiently on an average
mobile phone, taking merely a few hundreds of milliseconds.
The Paillier encryption and equality proof generation can
complete in 50ms and are insensible to the size of input data.
The time taken by Bulletproof increases with the input length,
yet is still well within 300ms even for 64-bit data. Regarding
storage overhead, our protocol consumes merely a few KBs
for the data provider. Again, the encryption and equality proof
are irrelevant to input length. The proof size of Bulletproof,
on the other hand, grows only slightly with input length.

To sum up, our protocol is efficient in both computation
and storage, enabling a broad range of data providers with
ordinary devices to participate at low overhead.

SGX processing performance. The service provider needs
to verify the proofs of each data provider and aggregate all
encrypted data. It will also add a random noise to the sum
and generate a decryption share. We measure the computation
cost of these procedures running inside SGX enclave. The
results are plotted in Fig. 5. As expected, the computation time
increases linearly with the number of data providers, which
determines the amount of time spent on proof verification
and data aggregation. Also, larger data leads to longer time,
mainly attributed to the increased complexity of Bulletproofs.
Nonetheless, the in-enclave processing is still highly perfor-
mant: it takes only 20 seconds even when there are 1000 data
providers submitting data in range [0,25% — 1].

BETransaction cost BTransaction cost
BExecution cost 1250 HExecution cost

0 "
dep. sol. reg. sub. aggr. appr. claim
Message type

dep. sol. reg. sub. aggr. appr. claim
Message type

Fig. 6. The estimated gas cost of calling contract functions on Ethereum.
Left: one-time contract. Right: our reusable contract.

TABLE I
THE MINIMUM MONETARY COST OF DATA CONSUMER
#DP 1 10 100 | 1000
Cost (USD) | 3.22 | 27.1 | 77.7 | 170

On-chain cost. We are interested in the on-chain cost of
executing the task contract. This may translate to the direct
monetary cost, and hence the practicality, of running our
protocol. Figure 6 reports the gas cost of sending messages
(i.e., calling functions) to the contract, where the transaction
cost means the overall gas cost to complete the transaction,
and the execution cost indicates the portion spent on the code
manipulating data and computation.

As can be seen, the three most costly messages are “deploy”,
“submit” and “aggregate”. The first one sets up the initial
contract permanently on the blockchain, and the last two write
non-trivial data to the chain. It can be also seen that by reusing
the contract and the already allocated data, we can significantly
save gas cost. In general, the savings can achieve a factor of
3 — 4x, explained by the fact that allocating new data on
Ethereum costs 21K gas per 32-byte word while rewriting
data only costs 5K gas [39]. There is no saving for “deploy”,
which constantly costs around 1.1M gas. This is however not
a concern because in our reusable design it iS one-time cost
amortized as more tasks are created.

In our reusable contract, the “submit” message call con-
sumes about 739K gas for the data provider to succeed in
recording the ciphertext and proofs. The service provider,
while reading a large amount of data from the contract, only
writes a small fixed amount back, causing less than 280K
gas. A provider may not be incentivized to participate in the
task if she is not paid off by the task rewards. This implies a
minimum reward that the data consumer should set in order
to motivate rationale participants. It is therefore interesting to
investigate the minimum price the data consumer should pay,
which covers its own cost as well as the rewards for others,
to successfully launch a crowdsensing task.

Table I shows the estimated total cost of data consumer
throughout the task, given a safe gas price 11Gwei and Ether
price $217 as of Sep 29th, 2018. The cost is well within
$100 for less than 100 data providers. Even a large-scale task
soliciting 1000 data providers will just cost the data consumer
$170. We consider these results practically affordable.

Overall system performance and bottleneck. The perfor-
mance of our system is predominantly determined by the
underlying blockchain, Due to configurations, the consensus
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Fig. 7. The estimated transaction confirmation time of two main contract
functions on Kovan testnet. Left: the time distribution for individual data
provider. Right: the accumulated time distribution for a task of 100 providers.

algorithm, and a wealth of other practical factors, the transac-
tion confirmation time varies dramatically from chain to chain.
To understand the real performance impact, nonetheless, we
estimate the confirmation time of two main functions of our
contract on Kovan testnet, at mean gas price. The results are
shown in Fig. 7. We run 200 independent trials for each case
and plot the cumulative distribution function (CDF).

First, we investigate from the individual party’s point of
view. From the left subplot, we can see that for both types of
transactions, roughly 95% of the individual providers experi-
ence a transaction time of less than 20 seconds. This is almost
two orders of magnitude larger than the local computation
time (cf. Fig. 4), confirming that the blockchain is indeed the
performance bottleneck of the entire system.

Next, how about the time needed by the entire task? Note
that having an exact measure makes no practical sense, since
different providers will send transactions at different time and
under different network conditions. Nonetheless, it might be
helpful to explore an extreme case where all participants call
the contract functions at roughly the same time. We consider a
task of 100 data providers, and estimate the accumulated time
for all of them to call the two main functions. This corresponds
to the duration of the solicitation and secure submission stage.
Here, we send all transactions in a row asynchronously and
wait for the last one to complete. From the right subplot, we
can see that in 80% of the cases, the duration for both stages
last for less than 400 seconds. For a task of size 100, this
result is perfectly acceptable. Note that the caveat that this only
approximates an extreme case for a tesetnet, but nonetheless
it confirms again our conclusion on performance bottleneck.

The above results help us establish the lower bound of the
overall system performance. They also provide us guidelines
to set the proper timer in the contract for state transitions as a
mean to upper bound the task running time (see Section I'V-B).

VIII. RELATED WORKS

Privacy-preserving data aggregation. Many secure de-
signs [40]-[45] have been proposed to protect individual
client’s data during data aggregation. There is also work [12],
[46], [47] that further supports differential privacy on the final
aggregate result. A recent system Prio [8] achieve data confi-
dentiality and robustness with secure multi-party computation
and ZKP techniques. All these works target a centralized
setting. In contrast, we aim to build a blockchain-powered
crowdsensing ecosystem with data aggregation services that
comprehensively promises data confidentiality, differential pri-
vacy, aggregation correctness, and robustness.
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Privacy-preserving smart contract. Lacking data confiden-
tiality is a major hindrance to the wide adoption of blockchain
applications. Hawk [48] is a seminal framework for privacy-
preserving smart contracts. It allows users to submit encrypted
input to smart contracts, and relies on an off-chain manager to
decrypt the data and execute contract functions with execution
proofs. As a main concern, it risks sensitive data to the
manager. We reiterate that in our design, individual provider’s
data is never disclosed to any other party.

Using TEE for confidential smart contracts attracts growing
attention [49]-[51]. They all assume powerful confidentiality
and integrity protection from the TEE, and execute con-
tract functions over plaintext data. As discussed before (see
Section V), however, the privacy of enclaved data can be
practically broken yet integrating countermeasures is non-
trivial. In comparison, our approach is more conservative, by
drawing on transparent enclave with integrity guarantee only,
and is thus more resistant to practical attacks.

Blockchain-based crowdsoucing. Li et al. [4] proposed a
blockchain-based crowdsourcing framework that mainly deals
with architecture design and smart contract implementation.
ZebralLancer [5] is a similar framework but aims for achiev-
ing the anonymity of participants, so that the incentive and
rewarding mechanism can take effect. To ensure on-chain data
privacy, both of them allow data to be encrypted with the
public key of the task requester (i.e., data consumer in our
terms); the requester can later decrypt and process individual
data. Thus, their security goal is different from ours — we
want to protect individual data, via which sensitive information
is directly revealed or can be inferred, strictly from any parties
other than its owner. The data consumer obtains nothing
beyond a noisy aggregate over individual data.

That said, ZebraLancer and our design are highly comple-
mentary to each other. A combination of them will be an
interesting research direction that will yield better security for
blockchain-based crowdsourcing and crowdsensing.

IX. CONCLUSION

We present a new blockchain-powered crowdsensing system
in this paper. By a careful consolidation of techniques and
customized designs, our framework achieves strong security
guarantee with data confidentiality, differential privacy, service
correctness, as well as robustness, in the open and distributed
setting. The efficiency and practicality of our designs are
also demonstrated by extensive experiments. We hope the
proposed system can spur the otherwise wary users and the
wide adoption of crowdsensing paradigm.
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