
Do You See What I See?
Detecting Hidden Streaming Cameras Through

Similarity of Simultaneous Observation
Kevin Wu∗, Brent Lagesse†

Computing and Software Systems
University of Washington Bothell

Bothell, WA USA
Email: ∗kevinw9@uw.edu, †lagesse@uw.edu

Abstract—Small, low-cost, wireless cameras are becoming
increasingly commonplace making surreptitious observation of
people more difficult to detect. Previous work in detecting hidden
cameras has only addressed limited environments in small spaces
where the user has significant control of the environment. To
address this problem in a less constrained scope of environments,
we introduce the concept of similarity of simultaneous observa-
tion where the user utilizes a camera (Wi-Fi camera, camera
on a mobile phone or laptop) to compare timing patterns of
data transmitted by potentially hidden cameras and the timing
patterns that are expected from the scene that the known camera
is recording. To analyze the patterns, we applied several similarity
measures and demonstrated an accuracy of over 87% and and
F1 score of 0.88 using an efficient threshold-based classification.
Furthermore, we used our data set to train a neural network
and saw improved results with accuracy as high as 97% and
an F1 score over 0.95 for both indoors and outdoors settings.
From these results, we conclude that similarity of simultaneous
observation is a feasible method for detecting hidden wireless
cameras that are streaming video of a user. Our work removes
significant limitations that have been put on previous detection
methods.

Index Terms—Security, Privacy, IoT, Pervasive Compuing,
Hidden Camera, Smart Spaces

I. INTRODUCTION

Internet connected cameras have become a pervasive feature
in the world. Most modern mobile phones contain at least
one camera as do many laptops. Additionally cheap Wi-Fi
connected cameras are easy to obtain and deploy. In addition
to these devices, there are a variety of hidden cameras that
are designed to evade visual detection. The cost of obtaining
and deploying such devices continues to drop as retailers such
as Amazon include Surveillance Camera and Hidden Camera
shopping categories that include thousands of results. While
Internet-connected cameras bring convenience to the owners,
they also create security risks. Weak security mechanisms
allow adversaries to exploit those IoT devices and have total
control over such devices. In 2016, Mirai malware took
advantage of the weak password settings of IoT devices and
compromised 3.5 million devices, many of which were Wi-
Fi cameras [1]. The infected devices were located globally,
including most of the countries in Europe, Asia, and North

and South America [2]. While one of the most widespread,
the Mirai botnet is just one of many examples of cameras
being compromised [3], [4], [5]. Furthermore, Wi-Fi cameras
have been installed to spy on people in environments such as
hotel rooms and AirBnB rentals [6], [7], [8], [9].

Given the ease of which cameras can collect information
on people without them knowing it, there is very little that
has been done to detect cameras that are spying on people.
Previous work in detecting hidden cameras has generally
relied on being indoors, having significant control of the
environment, or performing significant manual inspection with
custom hardware [9], [10], [11]. In this paper, we present
our work in automatically detecting Wi-Fi cameras that are
streaming video of a particular scene that the user is interested
in. The approach works both indoors and outdoors in large or
small areas and can be accomplished with common computing
equipment such as a mobile phone or laptop.

To address this problem, we introduce Similarity of Simulta-
neous Observation to identify cameras that are streaming video
of a user. This is accomplished by utilizing a known camera
in the environment such as the camera on a mobile phone
and recording the environment. Simultaneously, a networking
interface enters into monitor mode and records nearby data
transmissions and logs the number of bytes transmitted in each
time step by each wireless device. Next, we apply similarity
measures between the data timing of the known recording
and each network device. Note that due to similarities in the
size of plaintext and its resulting ciphertext when encrypted,
this approach works regardless of if the camera is using
encryption or is on another wireless network that we do not
have credentials to join. If the two transmissions are deemed
similar enough, then we flag that device as potential webcam.

We have evaluated our approach using over 15 hours of
recordings taken from indoors and outdoors environments with
varying levels of motion, resolution, and relative angles of
the cameras along with a variety of traffic sources that are
not observing the user in order to demonstrate the robustness
of this approach. Our experimental results show that we can
achieve 100% recall and F1 scores of 0.965.

Contributions. The major contributions of our work can be
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summarized as the following three items:

1) Description of a problem that has not previously been
addressed in research literature in section III.

2) A novel methodology that is able to detect hidden Wi-Fi
cameras with a mobile phone in section IV.

3) Evaluation of the methodology in a variety of environ-
ments and conditions in section V.

While the focus of our work was on streaming Wi-Fi
cameras, the techniques would apply to any streaming camera
as long as the system could acquire the per-time step byte
counts of the device transmitting the data (for example, at a
router).

II. BACKGROUND

Our preliminary work [10] was the first known research
to demonstrate that it is feasible to detect hidden cameras
that are streaming video of a user by causing a change in the
physical environment and comparing the bandwidth usage of
the devices that could potentially be recording the user. Liu et
al. [12] and Cheng et al. [13] published similar research shortly
after that also used probes to detect hidden Wi-Fi cameras.
Unfortunately, the techniques described in this work require
a disturbance in the environment to operate such as rapidly
flashing the flash LED on the mobile phone. This is generally
not an activity that a user would want to perform during a
meeting. Furthermore, the techniques described in these papers
became increasingly ineffective in larger spaces, so it is not
suitable for detecting cameras in outdoor areas or large open
spaces such as shopping malls.

The reason these techniques work is due to the inter-
frame video compression algorithms commonly used by Wi-
Fi cameras, mobile phones, and video streaming applications.
The most common modern compression algorithm used by
Wi-Fi cameras, H.264, was first introduced in [14]. One of the
improvements of the H.264(MPEG-4 Part 10) is the ability to
reduce the size of a video file, which requires less network
bandwidth and storage space. The H.264 achieved this by
removing unnecessary information, specifically, the unchanged
pixels between frames. Instead, the algorithm only encodes
the changing pixels with respect to reference frames. Thus,
more movements occurring in the environment forced the Wi-
Fi camera and the mobile phone to generate more data in
network traffic and video frames. Our system is not exclusive
to H.264 and should work with any compression technique
where the size of encoding at a given time is a function of the
scene it is observing.

III. PROBLEM STATEMENT

In this section, we introduce the problem that we address
in our research. To the best of our knowledge, no previous
research has directly addressed this problem. Given an arbi-
trary space, is it feasible to detect whether or not somebody
is streaming video of that space.

A. System Model and Assumptions

We assume that the user is interested in detecting a camera
that is streaming video of them in an environment with
a significant number of wireless networks and potentially
wireless cameras. In this paper, we refer to a scene as the area
of observation recorded by a given camera. It is not enough
just to detect that a device on the network might be a camera,
but also that the device is recording the scene in question. As a
result, there may be dozens of networks, dozens of streaming
devices, and hundreds or thousands of total devices within
range of the user.

We assume that the user has typical computing equipment
available to them. For example, they possess a computer or a
mobile phone and a network card that is capable of entering
into monitor mode. We do not make explicit assumptions about
whether the user is indoors or outdoors. We do not assume
knowledge of the location of the Wi-Fi camera other than that
it is within range of the wireless device that is in monitor
mode. We do not assume that the user has credentials to join
the network that the Wi-Fi camera is transmitting on.

B. Attacker Model and Assumptions

We make the following assumptions in this paper. This work
focuses on currently publicized attacks such as those in hotels
and off-the-shelf spy cameras. As a result, we assume the
attacker lacks the motivation or technical skills to drastically
reconfigure the camera. For example, the attacker may be an
AirBnB owner or even somebody who has compromised a
remote webcam by guessing the password. We do not address
the case of nation-state level attackers that have the technical
expertise to modify the camera software to induce randomness
in the stream to evade correlation. We assume that the attacker
is streaming the video that is being recorded.

The work in this paper is designed to address 3 attacker
models.

1) The attacker has placed a hidden camera.
2) The attacker has compromised a device with camera

capabilities.
3) The user has deployed a device that is streaming video,

but does not realize it.

C. Design Requirements

The purpose of our work is to help users detect that a
device is streaming video of them. To this end, our work was
approached with the following requirements:

• The system must work with common computing equip-
ment that people tend to have with them most of the time.

• The system must work indoors or outdoors.
• The system must not require manipulation of the envi-

ronment.
• The system must work even if the video is encrypted.

To the best of our knowledge, no known system or tech-
nique meets all of these requirements which has limited the
effectiveness of camera detection techniques.
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Fig. 1: Flowchart of the two detectors.

IV. METHODOLOGY

We propose and evaluate the detection of Wi-Fi cameras
passively by recording the environment. The detection mecha-
nism analyzes timing characteristics that exist in the recorded
video and the network traffic of the Wi-Fi camera.

The default behavior of Wi-Fi cameras is based on the video
compression algorithm they use. H.264, a block-oriented,
motion-compensation-based video compression standard, is
utilized by many modern Wi-Fi cameras and streaming appli-
cations to transfer data efficiently. To reduce bandwidth usage,
the standard only records motions between frames, in order to
reduce storing overlapping information. Thus, a large amount
of movement forces the Wi-Fi camera to generate and transfer
large amounts of data, which creates peaks in network traffic.

The proposed framework has four major steps. The first step
is to monitor the environment digitally by recording video and
network traffic simultaneously. The recorded files contained
timing characteristics that are essential to identify Wi-Fi
camera. The second step is to extract a feature, specifically,
the number of bytes per second, from both either the video
file or the recorded network traffic file. This results in a vector
of unsigned integers that represents each recording. The third

step is to perform statistical analysis, calculating the Pearson
correlation coefficient (CC), Dynamic Time Warping (DTW)
distance, Kullback-Leibler divergence (KLD), and Jensen-
Shannon divergence (JSD) on the bytes-per-time step vectors.
The last step is to classify each vector as belonging to a spying
camera or not. Descriptions of each steps and corresponding
implementation are presented in the sections below. Figure 1
provides a visual overview of this process.

A. Digital Monitoring

Digital monitoring is the first step in gathering data from
the network traffic and the mobile phone. Network traffic is
monitored while the mobile phone is recording the environ-
ment. In this step, the recording of the network traffic and the
mobile phone are performed simultaneously.

1) Network Monitoring: In order to record the network
traffic, a network sniffing tool is used with a network card
in either promiscuous or monitor mode. Wireshark, an open
source network sniffing tool supported in various platforms, is
used to sniff the network traffic. In the experiments, Wireshark
is used on a Macbook Pro with macOS High Sierra 10.13.4
to perform network monitoring. The version of the Wireshark
software installed on the laptop is 2.4.2 and the Network Inter-
face Card installed on the laptop is AirPort Extreme (0x14E4,
0x170) with firmware version of Broadcom BCM43xx 1.0
(7.77.37.29.1a7).

2) Video Recording: To retrieve data from the environment
that is monitored by the Wi-Fi camera, video recording is
performed from the back camera of the mobile phone. The
video recordings on the mobile phone also use a video
compression algorithm to shrink the size of the video file.
Mobile phones used H.264 to encode the video. This paper
uses a Motorola-Z, with the OS version Android 8.0.0, to
perform the experiments. The videos were recorded as either
720p or 1080p depending on the experiment, and are all in the
length of one minute. The videos are encoded as MP4 files
with audio support.

B. Process for Features

After the recording is completed, features are extracted from
the recorded files to form data streams between IP addresses (if
in promiscuous mode) or MAC addresses (if in monitor mode).
Two data streams are further extracted from the recorded
network traffic and the video file. While the recorded video
is encoded as a MP4 file and the recorded network traffic is
saved as a PCAP file, it is necessary to extract the same feature
from the recorded files to perform statistical analysis. Bytes-
per-time step, a shared feature in both MP4 and PCAP files, is
extracted from the recordings. Experimentally we determined
that 1 second time steps provided a good trade-off between
timing differences of the devices and the amount of data that
the device needed to send.

C. Perform Similarity Analysis

Initially, we utilized the techniques used by [10] to de-
tect cyber-physical correlations; however, relying solely on
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Fig. 2: Correlation Coefficients for Various Traffic Sources (Error bars are one standard deviation above and below the mean)

Pearson’s correlation coefficient resulted in an unacceptable
number of false positives in some of our environments. As
shown in figure 2, the correlation coefficient did result in
visually different results; however, the standard deviations
were so large that it was not useful as a classifier by itself. To
counter this problem, we utilized several additional distance
measures. In the case of comparing recorded videos with
streaming network traffic, the correlation coefficient had so
little predictive power that we did not include its results in the
evaluation.

After the byte-per-second streams are extracted, we further
conduct statistical analysis to calculate the relationship be-
tween the two data streams. Before performing any statistical
analysis, data normalization is applied. In this project, Correla-
tion Coefficient (CC), Dynamic Time Warping (DTW), Jensen-
Shannon divergence (JSD), and Kullback-Leibler divergence
(KLD) are selected to measure the relationships between the
two data streams. CC is a statistical measure to calculate
the correlation between two variables, and DTW is another
algorithm to measure similarity between two temporal se-
quences. KLD calculates the differences between two normally
distributed data samples and JSD measures the similarity
between two probability distributions.

1) Data normalization: Data normalization is performed
to standardize the range of the variables in byte-per-second
streams. This pre-processing step eliminates the effect of
particular outliers and prevents certain objective algorithms
from failing. This study utilized feature scaling to perform
data normalization. Feature scaling re-scales all values in the
data stream into the range between 0 and 1.

D. Decision Making

The results of the similarity analysis are used to decide
whether the network stream is a Wi-Fi camera that is spying
on the scene. We examined two methods for classification. One
is a threshold-based approach where we identified values that
most effectively differentiated between spying and non-spying
devices. The second is a machine learning based classifier
where we trained a neural network to differentiate differentiate
between spying and non-spying devices.

1) Threshold-based approach: The threshold selection was
conducted based on the number of tests. Each collected result
is further compared with the proposed threshold to determine
the strength of the relationships. The threshold values are se-
lected based on the corresponding F1 score. For each measure,
we computed the F1 scores for various threshold values and
selected the one with the highest F1 score.

2) Machine-learning-based approach: After studying the
threshold-based approach, we observed that when the system
produced errors, it was usually not for all of the metrics.
Only in 24% of our errors did we observe that all of our
metrics were incorrect. As a result, we decided to combine
the metrics using supervised machine learning. We examined
a variety of machine learning algorithms and were able to
achieve significantly improved results by training a neural
network.

V. EVALUATION PROCEDURE

In this section we evaluate the effectiveness of our approach
to detecting hidden cameras in a variety of environments.
The goal of our evaluation is to understand under which
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circumstances the approach is effective. We have evaluated
the approach by analyzing both the network output of a Wi-Fi
camera and a recording taken (but not transmitted) on a mobile
phone. We have collected data under a variety of conditions
as described in table I by varying the relative angle between
the devices, motion in the space, resolution of the cameras,
and whether the environment is indoors or outdoors. Through
these experiments we demonstrate that our work is effective
in environments that prior work [10] was not effective.

A. Detectors
We selected two likely options that a user would have to

detect a streaming camera. The first of these is to use a Wi-
Fi camera and the second is to use the camera on a mobile
phone or laptop. Two Wi-Fi cameras are more likely to have
stronger correlations between their network outputs due to the
similarity of hardware; however, a user is more likely to carry
a mobile phone than a Wi-Fi camera, so we examined both
options.

B. Environmental Setup
The baseline of environment for our experiments is an 80

square meter room with lights on and with two individuals
moving in space. For reference, the results in [10] began
to significantly degrade when the device was further than 2
meters from the spying camera. For our outdoor testing, we
recorded a 250 square meter courtyard during the evening of a
sunny day with one individual walking around in the space. We
also performed some experiments on a university campus with
a scene that was approximately 3000 square meters (results
pertaining to this environment are labeled "campus").

1) Parameter setting: For this research, we used an
Android-based Nexus 6P and a D-Link Wi-Fi camera (DCS-
936L) to perform data collection. Unless otherwise noted, the
parameters in Table I were used for our experiments.

TABLE I: PARAMETER SETTINGS OF THE EXPERIMENT.

Parameters settings Parameters Tested
Wi-Fi camera DCS-936L

Video compression H.264/MPEG-4
Mobile phone Google Nexus 6P
OS platform Android 8.0.0

Video resolution 720p and 1080p
Room size 80 square meters

Courtyard size 250 square meters
Illumination level of the room Bright

Testing angles 0, 90, and 180 degrees
Window of recording 60 seconds

As seen in Table I, the testing environment of the exper-
iments is an 80 square meter room with illumination. The
window size of the recordings (network traffic recording and
video recording) is 60 seconds. Different angles between
the hidden Wi-Fi camera and the detectors are also being
considered. Testing angles included 0 degree, 90 degrees,
and 180 degrees. The video compression algorithm of the
Wi-Fi camera is H.264 with 720p resolution, and the video
compression algorithm of the mobile phone is H.264 with both
720p and 1080p as resolutions.

2) Collected data: In this research, we have collected in
total 464 data samples from the indoors room using the Wi-
Fi camera, mobile phone. We collected 217 samples of traffic
from outdoors. We collected 260 samples of non-spying traffic.

There is a mix of videos that capture motion and no motion.
The Wi-Fi camera recorded at 720p and observed the scene
relative to the spying camera at angles of 0, 90, and 180
degrees. The recorded video from the mobile phone included
similar data except we also recorded additional data at 1080p.

We collected videos with both the Wi-Fi camera and the
mobile phone of the outdoors courtyard. The videos were
collected with and without motion. The camera and phone
were both used to record the courtyard at 0 and 90 degrees
relative to the spying camera. We also collected data from an
outdoors portion of a university campus.

For non-spying camera traffics, we collected in total
260 data samples of network traffic from Skype, YouTube,
YouTube TV, Amazon TV, Switch gaming, Normal browsing,
and Video downloading. Those non-spying camera traffics are
used in this paper to not only produce true positives, but
also avoid false positives. We mostly focused on video-related
traffic patterns, but also included non-video data for diversity.

C. Results

In this section we present the results of the analysis of
the data we collected. These results show that the correlation
coefficient measurement used in [10] does not hold for larger
outdoors spaces. They also show the added difficulty of
measuring similarity between different types of devices. From
these results, utilize additional distant measures and train a
neural network to assist with classification.

1) Correlation Coefficient: Since previous work had relied
on Pearson’s correlation coefficient, we first examined it as a
similarity measure. These results can be seen in figure 2. Note
that while all of the situations in which there was a spying
camera on average are different than the non-spying traffic,
the standard deviations caused a significant overlap between
spying and non-spying traffic, so we concluded that we would
be unable to use only correlation coefficients for classification.
Likewise, we demonstrate in figure 3a that the difference
between non-spying traffic and spy cameras degrades even
further when we consider results from the outdoors scenario.

2) Similarity Measures: Next, we considered other mea-
sures for determining the similarity and differences between
our recorded stream and the spy camera. We examined JSD
and KSD as divergence measures and showed that they pro-
vided significantly different results in spying vs non-spying
traffic. In figures 3b and 4b we see that for both the camera
and the mobile phone, JSD has the most distance between one
standard deviation above the mean for the spying video and
one standard deviation below the mean for the non-spying
video. Likewise, KLD provides the largest gap between the
mean of the spying video and the non-spying video.

In our experiments between the Wi-Fi camera and the mo-
bile phone, we noticed that there was a significant difference
between the data usage of encoding on the phone and the
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(a) Correlation Coefficient between Wi-Fi Camera and Spy Camera (b) JSD and KLD between Wi-Fi Camera and Spy Camera

Fig. 3: Wi-Fi Camera Detector

(a) DTW between Mobile Phone and Spy Camera (b) JSD and KLD between Mobile Phone and Spy Camera

Fig. 4: Mobile Phone Detector

traffic patterns of the Wi-Fi camera. We attribute this to the
low power hardware used in the Wi-Fi camera as we noticed
that there were often times of significant movement where the
Wi-Fi camera did not transmit any data at all and then spiked
in traffic shortly after the movement. This pattern caused
the correlation coefficient to become almost useless, so we
examined DTW as a distance measure. DTW distance was
only a weak predictor of whether or not a device was a spy
camera as seen in figure 4a.

3) Threshold-based Classifiers: After we analyzed similar-
ity measures as suitable for determining the distance between
spying and non-spying traffic, we analyzed our results to
identify optimal thresholds for classification. The advantage of
threshold classification is that it has a very low computational

TABLE II: CLASSIFICATION THRESHOLDS

CC 0.21
DTW 12.51
KLD 0.021
JSD 0.005

cost, so it has value as a classifier for low power devices.
From this analysis, we identified the best thresholds for each
measure based on F1 score as shown in table II. Note that
these are not necessarily always going to be the optimal
threshold, but they do provide us with an understanding of
an approximate starting point for a threshold-based classifier.

The results of the threshold-based classifiers can be found in
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table V-C3. As expected from the analysis of distance between
the means and standard deviations, KLD and JSD greatly
outperformed DTW with the mobile phone detector.

TABLE III: THRESHOLD-BASED CLASSIFIERS.

Metrics F1 score Accuracy Error Precision Recall(TP )
Wi-Fi camera-based detection model

CC 77.642 77.005 22.994 81.159 74.418
KLD 88.643 87.165 12.834 84.384 93.355
JSD 83.208 84.841 15.158 76.497 91.208

Mobile phone-based detection model
DTW 78.947 72.173 27.826 67.415 95.238
KLD 89.185 87.304 12.695 83.611 95.555
JSD 88.656 86.782 13.217 83.661 94.285

Fig. 5: Time to Convergence

4) Machine Learning Classifiers: We examined the false
positives that resulted from each of the different threshold
measures and noted that only 24% of the time did all of the
measures simultaneously produce a false positive. Table IV
provides a breakdown of the false positives. We hypothesized
that we could utilize the lack of agreement between the sim-
ilarity measures to improve our results via machine learning.
We did not examine a majority vote system because that would
have only eliminated the false positives in 56% of our samples.

We examined many standard classifiers to attempt to im-
prove above the threshold classification method. Of these, we
achieved the best performance with a neural network. We
performed grid search with 10-fold cross validation. For this
study, a in total of 768 combinations of hyper-parameters are
tested. We performed the grid search separately for both the
Wi-Fi camera detector and the mobile phone detector and

TABLE IV: FALSE POSITIVE COUNT

False Positives Wi-Fi Camera Mobile Phone
Total Samples 61 135

3 3.28% 33.33%
2 80.33% 10.37%
1 16.39% 56.30%

TABLE V: F1 SCORES FOR PORTABILITY BETWEEN INDOORS AND OUT-
DOORS TRAINING FOR WI-FI CAMERA DETECTOR

Tested

In
do

or
s

O
ut

do
or

s

B
ot

h

Tr
ai

ne
d Indoors 96.55 62.50 67.24

Outdoors 81.11 92.31 83.67
Both 83.02 84.21 85.71

TABLE VI: F1 SCORES FOR PORTABILITY BETWEEN INDOORS AND OUT-
DOORS TRAINING FOR MOBILE PHONE DETECTOR

Tested

In
do

or
s

O
ut

do
or

s

B
ot

h

Tr
ai

ne
d Indoors 96.55 73.68 78.79

Outdoors 82.62 95.23 66.67
Both 72.72 82.35 89.15

they both produced very similar models. The Wi-Fi camera
detector’s selected model had L-BFGS as the solver and the
Logistic activation function. It also had three hidden layers
with 13 neurons in each of them. The only difference with the
mobile phone detector was that each layer had 14 neurons.

5) Best Classifiers: Based on the results from sections V-C3
and V-C4, we selected the best threshold-based and machine-
learning-based classifiers for the two detection models. The
selected best classifiers are presented in Table VII below.

Table VII presents the best classifiers for the two detection
models. As seen in the table, neural network models outper-
formed threshold-based classifiers both in terms of the F1
score and an accuracy rate achieving above 94%. Moreover,
both of the neural network models had a 100% recall rate,
so scoring measurements that focus more heavily on True
Positives would result in even better scores.

6) Convergence Time: While all of the tests described in
this paper were run on 60 seconds of observation, we also
examined the convergence rate of detection. We randomly
selected 1 spying camera device and 69 non-spying camera
devices then analyzed our results at each time step. Figure 5
shows that our results when averaged over 40 trials. Generally
the spying camera is identified within a 10 seconds, and the
rest of the time is spent weeding out the false positives. We
see that the F1 score exceeds 0.90 within 20 seconds.

7) Model Portability: In this portion of the evaluation we
examined the portability of the models between indoors and
outdoors spaces. Figures V and VI present a matrix summary
of the results by showing the F1 scores for our models when
the data is partitioned into Indoors, Outdoors, and Both and
then the model is trained and tested on samples from each set.
From these results, we see that, as one would expect, the best
results are achieved when the model is trained only with the
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TABLE VII: THE SELECTED BEST CLASSIFIERS.

Classifiers F1 score Accuracy Error Precision Recall
Wi-Fi camera-based detection model
Threshold-based: KLD 88.643 87.165 12.834 84.384 93.355
Neural Network Indoors 96.551 97.436 2.564 93.333 100.000
Neural Network Outdoors 92.307 94.118 5.882 85.714 100.000
Mobile phone-based detection model
Threshold-based: KLD 88.814 87.453 12.546 81.846 97.080
Neural Network Indoors 96.550 96.078 3.922 93.333 100.000
Neural Network Outdoors 95.238 96.774 3.226 90.909 100.000

class of data that it will be used to test with. We also note that
training with the outdoor data provided much better results for
non-outdoors testing than occurred with indoor training data.
In general we conclude that it is best to use separate models
for drastically different types of space, but even if you use a
combined model, there will still be value to the results.

VI. DISCUSSION

The results we obtained in this study demonstrate that
there are 4 main points of concern for determining how
accurately one can detect hidden cameras using the passive
approaches described in this paper. These include the changes
in the physical world that can be observed by the devices,
the fidelity of the camera, the network transmission, and the
background traffic from other devices. In other words, to
theoretically predict your results, you need to answer the
following questions: i) What is happening in the physical
world? ii) How is it being recorded? iii) How is it being
transmitted? iv) How is it different from other transmissions?

A. Scene Change

Scene change describes the scene that the cameras are
recording. To demonstrate this point, consider two cameras
that are facing each other with a television in between them.
The camera facing the front of the television would record sig-
nificant change whereas the one facing the back would record
no change. The primary variables that can affect detection are
the relative placement of the cameras which affects the portion
of overlap of the recorded scene, and the magnitude of the
movement in the overlap of the recorded scene. The placement
of the cameras affect the detection since their location affects
the number of pixels that are simultaneously altered due to a
change in the scene between shared between two recordings.
The magnitude of the movement in the scene affects the
detection since no movement or constant movement will be
easy to confuse with periodic network traffic that has a similar
transmission frequency to the I-Frame transmission frequency
for the codec or for near constant bitrate traffic, respectively.

B. Camera Fidelity

Camera fidelity describes the quality of the recording made
by the camera. To demonstrate this point, consider an extreme
case where the camera only records a single pixel that is either
black or white vs a camera with 1920x1080 resolution. The
higher resolution camera would be able to pick up subtle
changes whereas the 1 pixel camera would not be able to

do so. The primary variables that can affect detection are the
resolution of the camera, the video codec, and the optics of
the camera. The resolution affects the number of pixels that
a change in the scene affects; normalization can mask this
in some cases, but not when a particular movement fails to
register a change in lower resolution cameras. The video codec
and its associated parameters can affect how many pixels are
reported as changed especially depending on the compression
technique. The optics of the camera can affect how sensitive
a camera is to change and whether or not minor changes are
detected.

C. Network Transmission

Network transmission describes how the data is dissem-
inated by the camera. To demonstrate this point, consider
a camera that is streaming over TCP and a camera that is
streaming over UDP. Congestion in the network could cause
the TCP camera to back off and modify its transmission
speed whereas the UDP camera would transmit as fast as
data was available, so the exact same scene could appear
on the network with different bandwidth consumption. The
primary variables that can affect detection are transmission
delays, differing protocols, and the differing parameters used
even when the protocols are the same. The delay can be due to
processing delay because of low-power computing hardware,
a phenomenon we experienced in our experiments, or due to
customization by the attacker to try to evade detection. As
mentioned before, different protocols for transmitting data can
affect the timing and quantity of data transmitted. Furthermore,
some protocols that adapt to bandwidth availability can cause
issues if they adapt during the middle of bandwidth sampling
since it would throw off our normalization process. Similarly,
each network transmission protocol can be configured with
different parameters that could result in different timings or
bandwidth usage patterns.

D. Background Traffic

Background traffic describes the network traffic that is being
transmitted by devices other than the spy camera. Since the
usefulness of detecting spy cameras depends on being able
to differentiate between the spy camera and other network
devices, devices that have transmission patterns similar to the
timing of movement in the recorded scene will result in false
positives as mentioned in section VI-A.
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E. Limitations

If an attacker switches from an interframe compression
algorithm such as H.264 to an intraframe or constant bit rate
compression algorithm then our technique will be ineffective
at detecting that camera; however, this switch comes with a
cost of increased bandwidth usage. While many cameras still
support MJPEG our experience has been that the cameras we
have evaluated default to H.264 and some of them no longer
include MJPEG support.

Additionally, we are limited to streaming cameras with
this approach. As future work we are examining improved
techniques for detecting cameras that are not streaming data.
Currently, this approach would need to be used as one tech-
nique in an anti-spying toolkit.

VII. RELATED WORK

Related research has focused on identifying services, ap-
plications, websites, and connected devices with various de-
tecting mechanisms. Since network traffic contained critical
information regarding communicating entities and ongoing
communications, most of the research concentrated on de-
tecting targets by utilizing the data embedded within network
traffic. Some studies introduced in perform timing analysis is
also related to our work.

A. Network traffic analysis

Geer et al. [15] demonstrate that network traffic analysis is
a powerful tool to identify targets regarding of the network
traffic volume that is generated daily. Their research included
several features of the network traffic, such as frequency, vol-
ume, and timing, that are favorable for the attackers to identify
particular patterns. Moreover, encryption over network traffic
does not prevent adversaries from studying those features. The
findings allowed adversaries to identify certain behavior and
services from the network traffic. Coull et al. [16] researched
network traffic analysis for Apple iMessage. The study looked
into the volume of the encrypted network traffic that is being
transferred and found that adversaries can successfully learn
the victim’s actions, language used, and the length of the
messages with 96% of accuracy.

Siby et al. [17] focused on an IoT-rich environment and
privacy concerns. They discovered existing wireless infrastruc-
ture by analyzing the numbers of Frames, mFrames, cFrames,
and dFrames; network traffic volume; and send-to-received
ratio passively identify IoT devices. Gong el at. [18] studied
the feasibility of Dynamic Time Warping (DTW) on network
traffic patterns. The study showed that website fingerprinting is
applicable, even with noisy network traffic, by applying DTW
with traffic analysis.

B. Timing analysis

Feghhi et al. [19] researched the effectiveness of timing-
based attacks against encrypted network traffic and were able
to infer web pages more than 87% of the time. Other studies
have demonstrated that performing timing analysis reveals
victim nodes within anonymizing systems [20], [21].

Apthorpe et al. [22] performed experiments on IoT smart
home devices. They discovered that the network traffic of those
devices often revealed potential information about user interac-
tions. Based on the sending/receiving rates of the streams, they
were able to map live traffic to user behaviors. This research
indicates that the network streams of IoT devices have certain
attributes that are controllable by the users. We expect to adapt
their findings to build a novel IoT sensor detection method
based on certain movement interactions. A timing analysis
on a low-latency network has also been discussed [20], [21].
Both studies have pointed out that the timing characteristics
of network traffic tend to be remained. We intend to extend
their findings to perform statistical analysis on the timing
characteristics of Wi-Fi cameras.

VIII. CONCLUSION

This paper has proposed and evaluated a novel method, Sim-
ilarity of Simultaneous Observation, for detecting streaming
Wi-Fi cameras. This method, as with the most effective prior
research [10], works with common computing equipment and
still works even if the attacker is using encryption or is on a
different Wi-Fi network. Unlike prior work, this method works
both indoors and outdoors without requiring any manipulation
of the environment.

To validate the feasibility of this approach, we first analyzed
the significance of the difference of several computationally
efficient similarity measurements. Then, we examined the
effectiveness of using those similarity measurements as a
threshold-based classifier. Next, we applied machine learning
to further improve our classification results. As a result,
we demonstrated a threshold-based similarity measure that
achieved an F1 score of 0.886 and a neural network model
that achieved an F1 score of 0.966 with 100% recall across
all of our scenarios.

We plan to further examine this technique across additional
devices and environments to fully understand the extent of
its value. We will perform energy analysis to determine its
suitability for regular use on mobile phones. We will address
more sophisticated attacker models where the attacker has
the capability of manipulating transmissions within some
constraints.

From these results, we conclude that Similarity of Simul-
taneous Observation is an effective approach to detecting
hidden streaming cameras in a variety of environments where
previous work has failed. We have identified that there are
some environments in which the technique performs better
than others, but even in the most difficult environments our
work is valuable.

IX. HUMAN SUBJECTS AND ETHICAL CONSIDERATIONS

The experiments described in this paper were reviewed by
our IRB and were determined to be exempt from a full IRB
review since any humans that were incidentally captured by
our cameras were in public locations and the techniques rely
only on the bytes per time step of the recorded video, not the
content of the video.
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