
Autoencoders for QoS Prediction at the Edge
Gary White, Andrei Palade, Christian Cabrera, Siobhán Clarke

School of Computer Science and Statistics,
Trinity College Dublin

Dublin, Ireland
{whiteg5, paladea, cabrerac, siobhan.clarke}@scss.tcd.ie

Abstract—In service-oriented architectures, collaborative fil-
tering is a key technique for service recommendation based on
QoS prediction. Matrix factorisation has emerged as one of the
main approaches for collaborative filtering as it can handle sparse
matrices and produces good prediction accuracy. However, this
process is resource-intensive and training must take place in the
cloud, which can lead to a number of issues for user privacy and
being able to update the model with new QoS information. Due
to the time-varying nature of QoS it is essential to update the
QoS prediction model to ensure that it is using the most recent
values to maintain prediction accuracy. The request time, which
is the time for a middleware to submit a user’s information and
receive QoS metrics for a candidate services is also important
due to the limited time during dynamic service adaptations to
choose suitable replacement services. In this paper we propose
a stacked autoencoder with dropout on a deep edge architecture
and show how this can be used to reduce training and request
time compared to traditional matrix factorisation algorithms,
while maintaining predictive accuracy. To evaluate the accuracy
of the algorithms we compare the actual and predicted QoS
values using standard error metrics such as MAE and RMSE.
In addition, we propose an alternative evaluation technique using
the predictions as part of a service composition and measuring
the impact that the predictions have on the response time and
throughput of the final composition. This more clearly shows the
direct impact that these algorithms will have in practice.

Index Terms—QoS, IoT, Edge, Deep Learning, Reliability

I. INTRODUCTION

The success of the Internet of Things (IoT) has created a
need for edge computing, where processing occurs in part
at the network edge, rather than completely in the cloud.
The number of devices connected to the IoT is predicted to
grow at an exponential rate, with latest forecasts predicting
that there will be 26 billion connected devices by 2020 [1].
The management of the services provided by these devices
is recognised as one of the most important areas of future
technology and has gained widespread attention from research
institutes and industry in a number of different domains,
including transportation, industrial automation and emergency
response [2]. The ability to manage services in these domains
relies on having fast and accurate estimates for the QoS
of candidate services available at the edge and an adaptive
middleware capable of responding to failures in currently
executing services. Edge computing can address a number of
traditional IoT concerns such as latency, mobile device battery
life, bandwidth costs security and privacy. The aggregation
of QoS values from other users and services allows the
collaborative filtering algorithm to make an accurate prediction

of the possible QoS values this service will have when invoked,
without directly invoking it [3], [4]. This reduces the load on
the network as the service composition engine does not have
to make additional invocations to retrieve QoS values.

Recommending services based on QoS has attracted a huge
amount of interest since the initial work proposing matrix
factorisation [5] and the collecting of a comprehensive dataset
to evaluate extensions of the original algorithm [6]. Since then,
a number of extensions have been proposed to the original
approach [7], [8], [9]. Many of these approaches have focussed
on extending matrix factorisation-based collaborative filtering
by taking into account alternative sources of information such
as time [10] or combining content-based features [11] and
taking into account different service providers in the IoT [9].
There are also approaches that take into account additional
factors such as the location of users in the environment [12].

The training and invocation time of matrix factorisation-
based algorithms is something not mentioned in the state of the
art with the overwhelming focus being on prediction accuracy
(MAE/RMSE between the predicted and actual matrix). The
resource intensiveness of generating latent features in the
matrix factorisation process can make it difficult to deploy
these algorithms at the edge of the network, where device
resources may be constrained. Unlike traditional collaborative
filtering applications such as film recommendations where
ratings from users do not often change over time, QoS factors
such as response time and throughput can be volatile and vary
with time. These algorithms need to be retrained frequently to
deal with new values being reported by users. There is also a
need to reduce the invocation time of the algorithms to ensure
that users get quick responses and a middleware has access to
the most recent QoS values to make the best possible service
composition. The reduction in invocation time also helps with
dynamic service recomposition allowing a composition engine
to choose a suitable replacement service before the application
fails. In our previous work [9], we illustrated a means to
increase prediction accuracy for QoS values. In this paper, we
reduce the training time for QoS predictions, which allows us
to analyse the QoS for users in a highly dynamic environment
that would otherwise not be possible in sufficient time to
influence a service composition process. We use a stacked
autoencoder to achieve this, which we have designed to be
executed on edge devices.

The same dataset is commonly used to evaluate new matrix
factorisation approaches for QoS prediction and comes from

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5386-9148-9/19/$31.00 ©2019 IEEE 72

WS-DREAM [6]. While this allows for comparison between
the accuracy of the algorithms, it still remains unclear what the
implication of this is, when the algorithm is used in an actual
service composition [4]. If an algorithm has a RMSE of 0.25
less than another on the Throughput dataset, how will this
affect the actual service composition? Will it be 25% better?
50% better? The evaluation of service recommender systems
on one dataset is good for repeatability, however there is a
trade-off to be made between offline, online and user studies
in recommender systems [13]. In our experiments, we consider
the direct prediction accuracy using standard error metrics to
allow us to compare against the state of the art approaches.
We also use the predictions as input to a service composition
algorithm to show the direct impact on the final application
composition. In this context, an application composition is
the result of composing individual services. We publicly
release our prediction and service composition algorithms to
allow future QoS prediction approaches to evaluate themselves
against state of the art approaches in a repeatable manner
(https://goo.gl/rNz8ia).

The remainder of the paper is organised as follows: Section
II outlines the related work, Section III describes the mid-
dleware architecture and deployment devices to allow QoS
predictions for currently executing services and candidate ser-
vices to take place at the edge of the network and increase the
reliability of IoT applications. Section IV describes existing
collaborative filtering approaches and our proposed stacked
autoencoder approach with dropout. Section V describes the
experimental approach using traditional standard error metrics
as well as using the predictions as input to a service composi-
tion approach to evaluate the impact on the final composition.
Section VI presents the results and Section VII concludes and
outlines additional future work.

II. RELATED WORK

To encourage additional user engagement with IoT ser-
vices one of the key research challenges to overcome is
the unreliability that can be caused by services provided by
devices that can be mobile, low power and wireless. This
problem can be tackled at a number of different stages in
service composition with approaches proposed for dynamic
service composition [14], service selection [15], run-time QoS
evaluation [16] and service ranking prediction [17]. These
approaches assume that the QoS values are already known,
but, in reality, user side QoS may vary significantly, given
unpredictable communication links, mobile service providers
and resource constrained devices. We can use collaborative
filtering based methods to make predictions for these QoS
values based on other similar users in the environment.

There are two main collaborative filtering methods, which
can typically be classified as either memory or model-based.
Memory-based approaches store the training data in memory
and in the prediction phase, similar users are sorted based on
the current user. There are a number of approaches that use
neighbourhood-based collaborative filtering, including user-

based approaches [18], item-based approaches [19] and their
combination [20].

Model-based approaches, which employ a machine learn-
ing technique to train a predefined model from the train-
ing datasets, have become increasingly popular. Several ap-
proaches have been studied, including clustering models [21],
latent factor models [22] and aspect models [23]. Latent factor
models create a low-dimensional factor model, on the premise
that there are only a small number of factors influencing the
QoS [24]. Since then, matrix factorisation has emerged as one
of the most-used approaches for collaborative filtering [7],
[25].There has been work on extending matrix factorisation-
based collaborative filtering by taking into account alternative
sources of information such as time [10] or combining content-
based features [11]. There are also approaches that take into
account additional factors such as the location of the users
in the environment [12], [25]. Other approaches have focused
on handling users who are contributing false values using a
reputation-based matrix factorisation [26]. There has been little
use of deep learning models for QoS predictions except for
initial explorations using Restricted Boltzmann Machines [27].

IoT adds additional constraints such as the resources avail-
able on devices. This requires alternative approaches that
can produce accurate predictions with less training time. In
our previous paper we focused on making more accurate
predictions based on standard error metrics for IoT services
using a matrix factorisation based approach [9]. One limitation
of this approach is that it is resource intensive to generate the
latent features, which increases the training time needed to
incorporate new values and makes it difficult to deploy on edge
devices. This can lead to a number of issues with user privacy
especially with the introduction of the General Data Protection
Regulation (GDPR) as users have to report their QoS values to
the cloud. There is also the additional problem that deploying
the algorithms in a cloud environment rather than at the
edge can increase the time taken to receive QoS predictions.
This can lead to more failures especially during dynamic
service re-composition, where suitable replacement services
must be chosen quickly before the application fails. This paper
demonstrates an alternative stacked autoencoder algorithm that
can be deployed on an edge device due to the dramatic
reduction in training time compared to previous approaches,
while maintaining state of the art service compositions. We
hope our results will encourage future approaches to consider
both the training and validation time to allow future algorithms
to be deployed at the edge of the network in a dynamic IoT
environment.

III. RELIABLE IOT APPLICATIONS

Figure 1 shows a small scale IoT scenario with deep edges.
The services are provided from a number of different services
types including including web services (WS) residing on
resource rich devices, wireless sensor networks (WSN), which
may be resource-constrained and controlled by a software
defined network, and autonomous service providers (ASP),

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

73

User Request

WS1: Flood Prediction
Service

ASP1: Noise Service

WS2: Air Polution
Service

Service Providers

Gateways

User Request

ASP3: Water Level
Service

WSN1: Water Level
Service

WSN2: Flood Prediction
Service

ASP2: Air Pollution
Service

WS3: Best Route
Service

GW2:192.168.2.2

GW1:192.168.2.1

GW3:192.168.2.3 GW5:192.168.2.5

GW4:192.168.2.4

Fig. 1: Deep Edge [28]

who are independent mobile users in the environment with in-
termittent availability. The services provided by these devices
are registered in the gateways with embedded GPUs (Nvidia
Jetson Tx2) capable of running deep neural networks at the
edge of the network. The access to GPUs at the edge of the
network allows for accelerated analytics and more decision-
making at the edge using the increased accuracy that can be
achieved with deep learning models [29] combined with the
quick response of edge networks. This will reduce traffic flow
to the cloud as the data can be aggregated and processed at
the edge with only a subset sent to the cloud. For example,
the edge device can run computer vision analytics in near real
time and send the results (content tags, recognised faces, etc.)
along with the metadata (owner, capture location, timestamp,
etc.) to the cloud. This can dramatically reduce the bandwidth
to the cloud by three to six orders of magnitude [30].

Deep edges also help with some of the recent challenges
that have been introduced with the establishment of new laws
such as GDPR, which came into enforcement on the 25th

May 2018 as part of the EU Data Protection Directive. Users
now have more control over their data and have become
much more interested in what data is being collected about
them, how that data is stored and who will have access to
their data. To allow for accurate QoS predictions we need to
collect data from users about services that they have invoked.
Current cloud-based approaches assume that users will allow
their metrics to be monitored and uploaded to the cloud. By
using deep edges instead of a traditional centralised cloud
based approach, we can have boundaries on data that align
with the physical model of users in the environment. The
edge device can run trusted software modules called privacy

mediators that execute on the device and perform denaturing
and privacy-policy enforcement on the sensor streams [31].
Edge computing can provide a foundation for scalable and
secure privacy that aligns with natural boundaries of trust and
conforms to GDPR, while still allowing for QoS predictions
to provide reliable IoT applications

There are a number of levels of reliability that can be
achieved in IoT applications. One way to categorise them is
by their QoS requirements, which are based on the sensitivity
and criticality of the application. IoT applications can typically
be categorised as best effort (no QoS), differentiated services
(soft QoS) and guaranteed services (hard QoS) [32]. In the
hard QoS case, there are strict hard real-time QoS guarantees.
This is appropriate for safety critical applications such as
collision avoidance in a self-driving car system. Soft QoS
does not require hard real-time guarantees but needs to be
able to reconfigure and replace services that fail. This could
be a routing application, which uses air quality, flooding and
pedestrian traffic predictions, to provide the best route through
the city. If one of the services is about to fail, the application
should be recomposed using suitable replacement services.
The final case is best effort, where there are no guarantees
if a service fails. In this paper we target Soft QoS as we feel
this level of reliability is attainable and will be suitable for the
majority of IoT applications.

A. QoS Monitoring & Prediction

To maintain Soft QoS guarantees for IoT applications we
use a middleware to support additional functionality such as
service discovery, registration and composition. The middle-
ware also has a monitoring engine that monitors currently
executing services. This data is input to the prediction en-
gine, which makes predictions for the QoS of both currently
executing and candidate services. The components are inde-
pendent and communicate using a publish/subscribe MQTT
broker allowing alternative components to easily be added
or removed. The services have a range of different QoS
properties including response-time, location of sensors and
energy consumption. The communication links for invoking
these services are diverse, which may affect the personal
QoS experience of users, so they are monitored using the
monitoring engine. In this paper, we focus on the prediction of
QoS values for candidate services at the edge of the network.

1) Currently Executing Services: For currently executing
services that require hard or soft QoS guarantees we want to
monitor and make predictions to identify whether any service
in the composition is about to fail or degrade in quality. We
monitor the services at the gateways and build up a time series
dataset, which is used to train our LSTM model [29]. This
model is then used to identify when a service may be about to
fail or degrade in quality and commit an SLA violation. When
a possible SLA violation is detected, the prediction engine
sends an alert to the service composition engine to compose
a new path using services already registered. If none of the
registered services has the functionality to replace the service,
a message is sent to the service discovery engine for proactive

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

74

service discovery, to identify whether any new services have
entered the environment and can replace the service about to
commit an SLA violation. This can allow for the replacement
of services in a composition before the user identifies that
there is a problem with the application.

2) Candidate Services: When an alert is triggered from
the prediction engine that a service is about to degrade in
quality, a suitable replacement service needs to be chosen
from a list of possible candidates, selected by the service
discovery engine based on their functional capabilities. The
final candidate service is chosen from this list based on non-
functional requirements such as response time and throughput.
The candidate service is chosen using a collaborative filtering
approach, which uses the reported QoS values from other users
in the environment to make predictions for services that the
user has not invoked. A composition engine can decide to
always choose the service with the best predicted QoS or to
choose one of the top-k services that satisfy the users request
to avoid potentially overloading the top service. The problem
is to maintain the accuracy of the QoS predictions of services,
while using minimum resources. The goal is to enable reliable
service compositions in mobile, dynamic environments, where
devices may be resource constrained. We propose a new
approach to evaluate these types of algorithms focused on
assessing the impact on the service composition. We include
the standard error metrics to show the difference in evaluation
approaches. We also evaluate other important metrics for QoS
prediction at the edge such as training time and invocation
time to ensure that these algorithms are suitable to be used
in an IoT environment and conform to the time requirements
required for a dynamic service composition.

IV. COLLABORATIVE FILTERING

A. Matrix Factorisation

Matrix factorisation is the most commonly-used approach
for collaborative filtering as it is known to give good results
even in sparse matrices [9]. The idea is to factorise the sparse
user-service matrix into V TH to approximate the original
matrix, where the low-dimensional matrix V denotes the
user latent feature space and the low-dimensional matrix H
represents the service latent feature space, using the latent
factor model [22]. The features in the latent feature space
represents the underlying structure in the data, computed from
the original dataset using matrix factorisation. For example, in
a movie rating dataset a latent feature may be the genre of the
movie and another latent feature may be a combination of the
year released and the director.

Let Ω be the set of all pairs {i, j} and Λ be the set of
all known pairs (i, j) in Ω. Consider the matrix W ∈ Rm×n
consisting of m users and n services. Let V ∈ Rl×m and
H ∈ Rl×n be the latent user and service feature matrices.
Each column in V represents the l-dimensional user-specified
latent feature vector of a user and each column in H represents
the l-dimensional service-specific latent feature of a service.
We can employ an approximating matrix W̃ = V TH to learn
the user-service relationship W [33]:

wij ≈ w̃ij =
l∑

k=1

vkihki (1)

To learn matrices V and H from the obtained QoS values
in the original matrix W , we need to construct a cost function
to evaluate the accuracy of the approximation. We use the
standard Euclidean distance between the two matrices as the
cost function.

F (W, W̃) = ‖W − W̃ ‖2F =
∑
ij

(wij − w̃ij)2 (2)

where ‖ · ‖2F denotes the Frobenius norm, which can then
be minimised using incremental gradient descent to find a local
minimum [34]. Once we have access to the low dimensional
dense matrices we can then compute the similarity between
different users and services using their latent features. The
final prediction can then be made using a weighted average of
the most similar users and services.

B. Autoencoder

An Autoencoder learns to compress data from the input
layer to the hidden layer and decode the hidden layer into
something that closely matches the original data, as can be
seen in Figure 2. As the hidden layers contain fewer neurons
than the input, the autoencoder engages in dimensionality
reduction through Non Linear Principle Component Analysis
(NPCA). In our experiments, we use a stacked autoencoder
with additional layers for greater expressive power. The use of
stacked autoencoders captures useful hierarchical grouping of
the input. An example from the use of autoencoders in vision
problems is that the first layer of a stacked autoencoder tends
to learn first-order features in the raw input such as the edges
of an image. The second layer can then use these features to
learn second-order features such as what edges tend to occur
together to form contours or corner detectors, with additional
layers using these second-order features [35].

The stacked autoencoder extends this model with multiple
hidden layers stacked together to generate a richer represen-
tation that leads to better performance [36]. One of the best
ways to obtain good parameters for a stacked autoencoder is
to use greedy layer-wise training [37]. The raw inputs are
trained on the first layer to obtain parameters and transform
the raw input into a vector consisting of the activation of the
hidden units. The second layer is then trained on this vector
and this process is repeated for subsequent layers, using the
output of each layer as input for the subsequent layer. The
weights learned during the training process are then used to
make predictions for users with missing QoS values.

A classical auto-encoder is typically implemented as a one
hidden-layer neural network that takes a vector x ∈ RD as
input and maps it to a hidden representation z ∈ RK through
a mapping function:

z = h(x) = σ(WTx+ b), (3)

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

75

Input OutputHidden

Encode-> Decode->

 ×

 ×

 ×

Fig. 2: Autoencoder Architecture with Dropout

where W is a D×K weight matrix and b ∈ K is an offset
vector. The resulting latent representation is then mapped back
to a reconstructed vector x̂ ∈ RD through

x̂ = σ(W
′
z + b

′
) (4)

The reverse mapping may optionally be constrained by tied
weights, where W

′
= W . The parameters of this model are

trained to minimize the average reconstruction error

argmin
W,W ′ ,b,b′

1

n

n∑
i=1

`(xi, x̂i) (5)

where ` is a loss function such as the square loss or the
cross entropy loss.

1) Denoising Autoencoders: Traditional autoencoders can
often just become identity networks and fail to learn the
relationship between data. This issue has been tackled by
corrupting inputs, pushing the network to denoise the final
inputs [38], [39]. The input can be corrupted using a number of
different approaches such as Guassian noise, Masking noise or
Salt and Pepper noise. This modifies a traditional autoencoder
loss function to emphasize the denoising aspect of the network.
It is based on two main hyperparameters α, β, which focus on
whether the network would focus on denoising the input α or
reconstructing the input β.

L2,α,β(x, x̃) = α(
∑
j∈J(x̃)

[nn(x̃j)−xj]2)+β(
∑
j /∈J(x̃)

[nn(x̃j)−xj]2)

(6)
Where nn(x)k is the kth output of the network, x̃ is the

corrupted input x, J are the indices of the corrupted element
of x. Another regularisation technique that is often used in
deep neural networks is dropout [40]. It randomly drops out
units from both the hidden and visible layers. Figure 2 shows
an example of a stacked autoencoder after applying dropout.
The neurons marked with x have been dropped and contain
no input or output connections. Each unit in the network is
retrained with a fixed probability p, which is equal to 0.5
in our experiments. Hidden layer activation before dropout is
according to the following equation:

hk(x) = g(ak(x)) (7)

where layer k ranges from 1 to L, which is the label of the
hidden layer. g is the activation function sigmoid that is used
in our experiments. The equation after dropping out units in
hidden layers with probability p is:

hk(x) = g(ak(x))�mk (8)

With k = L+ 1, output layer is:

hL+1(x) = o(aL+1(x)) (9)

where o is also an activation function.
Designing an autoencoder architecture for the edge is an

interesting problem as you have to balance the limitations
of the devices that you are training on, while also being
able to deliver accurate QoS predictions. We designed our
autoencoder approach to have a small number of neurons
to reduce training and invocation time [41]. We also tested
multiple different numbers of layers to identify the impact
that this had on the composition accuracy and response time
of the algorithm. We found that the use of dropout on each
layer while training allowed us to avoid overfitting while
maintaining better prediction accuracy compared to adding
noise to the inputs.

The autoencoder is implemented with 4 fully connected
layers. The encoding part of the network has two layers of
20 and 10 neurons and the decoding part of the network has
two layers of 10 and 20 neurons. We use the sigmoid activation
between the layers of the network. We also include dropout
on the middle layer with p=0.2. We use the mean squared
error as the loss function RMSprop as the optimiser with
learning rate=0.01 and weight decay=0.5. We experimented
using Adam optimisation [42], but found better results using
RMSprop. The network is trained for 20 epochs (passes
through the entire training dataset).

V. EXPERIMENTAL SETUP

A. Dataset

To test our algorithm, we used an established dataset to
control for any differences in QoS that can be caused by
invoking services at different times. We used the dataset
released by Zheng et al. [6], which consists of a matrix of the
response time and throughput of 339 users from 30 countries
for 5,825 real-world web services from 73 counties. The users
are a number of distributed computers from PlanetLab and are
not co-located with the services. Response time is the time
duration between a user sending a request and receiving a
response, while throughput denotes the data transmission rate
(e.g. kbps) of a user invoking a service. The reason for the use
of a dataset instead of a testbed is to allow more users and
services to be evaluated as we are not aware of any testbeds
that have access to 339 users and 5825 services. The time
varying nature of QoS can also lead to the algorithms being
evaluated using different values in testbeds making it harder
to evaluate the impact of the algorithm.

As this dataset is for web services, which are usually
deployed in the cloud, they have better response time than

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

76

might be expected from low power devices. To make the
data applicable for the experimentation we use the HetHetNets
traffic model to add heterogeneous traffic data to the existing
dataset [43]. This provides a realistic and manageable traffic
model that can be applied in many contexts such as Wi-
Fi, ad-hoc and sensor networks. We set the parameters to
λ = 2, for modelling network traffic in sensor networks and
the IoT [43]. There are different scales in the datasets with
the response time ranging from 0.002s to 27.285s and the
throughput ranging from 0.004kbps to 1000kbps. There is
also a high level of kurtosis in both dataset with response
time=11.03 and throughput=28.58.

B. Metrics

We use a combination of metrics to evaluate the prediction
accuracy of the proposed algorithms, in particular, standard
error metrics such as the Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). MAE is defined as:

MAE =
1

N

∑
i,j

|wi,j − w∗i,j | (10)

RMSE is defined as:

RMSE =

√
1

N

∑
i,j

(wi,j − w∗i,j)2 (11)

where wi,j is the QoS value of service cj observed by
user, ui, w∗i,j denotes the predicted QoS value of the service
cj by user ui. N is the number of predicted QoS values,
which normalises the prediction accuracy across the matrix
densities. RMSE gives large weight to extreme errors due to
the squaring term.

One of the problems with standard error metrics is that it
can be difficult to know how the difference in accuracy of the
predictions will perform as part of a realistic IoT application.
To evaluate this, we use the predictions as part of a service
composition process to compose an application. We generated
a number of composition paths with services available in the
environment identified to satisfy a user request by the request
handler. The service composition engine creates a list of
service flows based on the concrete service providers received
from the service discovery engine. The flows are then merged
based on the service description. If two or more services in
the flow have the same input, the composition engine creates
a guidepost to enable the invocation of the services based on
QoS.

In this work, we consider the QoS metrics of response
time and throughput for each branch. The response time is
calculated by the mean response time values of each service
in the branch and the throughput is the minimum throughput
of the set of selected candidate services. The predictive com-
position process uses the predicted values generated through
collaborative filtering to choose the optimal flow. We make
10 composition branches with 10 services in each. Once the
branch has been chosen using the predicted values we report
the actual values based on the original data. This allows for

comparison between the two prediction approaches and the
optimal composition that could have been chosen.

To evaluate the suitability of deploying the algorithm at the
edge of the network we evaluate the training time on an edge
device, in this case a Jetson Tx2. This time constrains how
often the algorithm can be updated with new values, which
has an impact on the accuracy when used on time varying
values such as QoS. We measured the time taken to train the
algorithms at different matrix densities. IoTPredict and NMF
are chosen as the matrix factorisation algorithms [9], [33] and
the stacked autoencoder algorithm proposed in Section IV-B.
We repeat the experiment 20 times showing the average and
standard deviation of the predictions in the results section.

We also evaluate the request time of the algorithms showing
how quickly a distributed middleware could receive QoS
predictions for users in the environment. In this measurement
we deploy each algorithm in the environment needed to train it
and include the network delay in the response. For the request
time we make 5000 requests to the services running on each
of the devices and show the distribution of data using a box
plot. This gives a realistic request time and shows the impact
of being able to deploy an algorithm on an edge node vs.
deploying the algorithm in the cloud. We conduct the network
test in our university, Trinity College Dublin and connect to
each of the devices using a wifi based network.

VI. RESULTS

A. Training Time

Looking at Figure 3a we can see that there is a large
difference between the training time of the three algorithms
with the two matrix factorisation approaches taking much
longer and increasing in time as the matrix density increases.
The average training time for the NMF algorithm is over
300s, IoTPredict is over 60s and the autoencoder approach
takes 15s. This is a relative speed-up of 20 and 4 times
using the autoencoder approach relative to matrix factorisation
approaches.

5% 10% 15% 20% 25% 30% 35%

Matrix Density

0

50

100

150

200

250

300

350

S
ec

on
d

s IoTPredict

NMF

Autoencoder

(a) Response Time Training Time

5% 10% 15% 20% 25% 30% 35%

Matrix Density

0

100

200

300

400

S
ec

on
d

s IoTPredict

NMF

Autoencoder

(b) Throughput Training Time

Fig. 3: Training Time of algorithms

The results are similar for the throughput training time as
seen in Figure 3b, with a large difference between the three
approaches. At 5% matrix density, the autoencoder takes 15s,
IoTPredict takes 57s and NMF takes 283s. As the matrix
density increases the matrix factorisation approaches increase
the time to train the model, while the autoencoder approach
stays almost the same. At 30% matrix density the autoencoder

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

77

takes 18s, IoTPredict takes 88s and NMF taking 381s. In this
case the speed-up using the autoencoder approach is 4.8 times
and 21 times. The dramatic reduction in training time for the
autoencoder approach allows it to be deployed and trained
on devices at the edge of the network one hop away from
users. This allows the model to constantly update with new
values reported by users in the environment. This keeps the
predictions accurate as QoS attributes can vary with time so
it is important to update the model with recent QoS values.

B. Request Time

The request time is the total end-to-end time from requesting
QoS predictions from the prediction algorithm to returning a
response including network delay. This is an important factor
when using a collaborative filtering approach for time varying
values especially in dynamic service re-compositions as the
composition engine needs quick access to QoS values for
candidate services. The validation time of IoTPredict and NMF
are the same as the matrix has been completed during training
so we only need a constant time lookup to find the QoS value
of the service. We deploy the IoTPredict algorithm in the cloud
as the larger training time is not suitable for edge devices.
We use a number of cloud instances in different countries to
show how the cloud location can impact request time. The
autoencoder approach is deployed on the Jetson Tx2 where it
is trained.

Autoencoder Edge IoTPredict Dublin IoTPredict Paris IoTPredict Frankfurt

0

10

20

30

40

50

60

R
eq

u
es

t
T

im
e

(m
s)

Fig. 4: Request Times

Figure 4 shows the boxplot with the median request time in
orange and the average request time in green. We implement
the IoTPredict algorithm in three data centres and invoke
the request from a node in our university Trinity College
Dublin. This explains some of the variation between the data
centre locations with the IoTPredict approach having reduced
request time in Dublin compared to the other locations, with
an average response time of 24.1ms. This is a good response
time for a cloud-based approach, however it may be seen as a
special case as the Amazon Dublin data centre is located very
close to Trinity College, which would not typically be the case
for most cloud based services. To evaluate this, we test two

other geographically close data centre locations in Paris and
Frankfurt. The average response time was 40.2ms in Paris and
36.2ms in Frankfurt.

However, we can clearly see the advantage of being able
to deploy the algorithm at edge, with the average response
time reduced to 5.40ms. This improvement in response time is
especially important for dynamic service recomposition, where
one of the services is forecast to fail and a new candidate
service needs to be chosen. The reduction in this time will
allow for a greater number of applications to recompose before
the user notices a failure. Given the current distribution of data
centres worldwide the results would typically be worse for
cities in South America and Asia where there may be greater
distance to the nearest data centre and worse network links.

C. Prediction Accuracy

Figure 5 shows the MAE and RMSE between the actual
and predicted values for the evaluated algorithms. There is
a clear difference in the prediction accuracy of the matrix
factorisation approaches and the autoencoder based approach,
with the matrix factorisation approaches producing much more
accurate results for both MAE and RMSE in the response time
dataset in Figure 5a and Figure 5b. The same results are found
for the MAE and RMSE in the throughput dataset in Figure
5d and Figure 5c. However, it is difficult to evaluate how this
will have an impact in an actual service composition. When
we are selecting a suitable service composition we care more
about the ranking and choosing the best ranked composition
rather than the individual predictions being accurate. This is
why we also evaluate the composition accuracy when using
these individual prediction approaches.

D. Composition Accuracy

To evaluate the composition accuracy we used predictions
from the algorithms for missing values in the service com-
positions. We then used a greedy-based service composition
algorithm to choose one of the 10 paths based on the pre-
dictions and show the average result for all the users in the
dataset. The experiment is repeated 20 times and the average
values are shown. As the QoS values are taken from a dataset,
they do not vary with time and allow the algorithms to be
evaluated fairly without showing the limitations of the matrix
factorisation approaches to incorporate new QoS data due
to a long training time. Figure 6a shows the impact of the
predictions for the response time of the final composition.
For low matrix densities, which we would expect in an IoT
environment the results are similar with less than one second
separating the final compositions at 5% matrix density. As the
matrix density improves we can see a reduction in response
time by using the NMF algorithm. However, for most IoT
scenarios we would typically expect a density between 5-10%.

The results for the throughput of the composition path
follow a similar pattern in Figure 6b with the composition
engine able to generate very similar compositions based on
each of the prediction algorithms for low matrix densities.
For larger matrix densities greater than 15% we can see a

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

78

5% 10% 15% 20% 25% 30% 35%
Matrix Density

1.35

1.40

1.45

1.50

M
A

E

Response Time

IoTPredict

NMF

Autoencoder

(a)

5% 10% 15% 20% 25% 30% 35%
Matrix Density

1.85

1.90

1.95

2.00

2.05

2.10

R
M

S
E

Response Time

IoTPredict

NMF

Autoencoder

(b)

5% 10% 15% 20% 25% 30% 35%
Matrix Density

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
A

E

Throughput

IoTPredict

NMF

Autoencoder

(c)

5% 10% 15% 20% 25% 30% 35%
Matrix Density

40

45

50

55

60

65

R
M

S
E

Throughput

IoTPredict

NMF

Autoencoder

(d)

Fig. 5: Impact of Matrix Density on Response Time and Throughput

slight improvement in using the NMF approach. However, as
the dataset we use is static, this does not show the benefits of
the improved response time and request time achieved by the
autoencoder. The NMF approach has a much larger training
time, which may over-fit on the current QoS data, which is one
of the threats to validity of this test of composition accuracy.

5% 10% 15% 20% 25% 30% 35%

Matrix Density

0

10

20

30

40

50

60

C
om

p
os

it
io

n
R

es
p

on
se

T
im

e

IoTPredict

NMF

Autoencoder

Optimal

(a) Response time of composition

5% 10% 15% 20% 25% 30% 35%

Matrix Density

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
om

p
os

it
io

n
T

h
ro

u
gh

p
u

t

IoTPredict

NMF

Autoencoder

Optimal

(b) Throughput of composition

Fig. 6: QoS attributes of composition

VII. CONCLUSION

The results of this paper have provided some interesting in-
sights for QoS prediction especially for future work at the edge
of the network. We have shown the dramatic improvement in
training times that can be achieved using a stacked autoencoder
approach with dropout on an embedded GPU at the edge of
the network. This reduced training time will have an impact
when using the predictions in a dynamic environment with the
QoS varying over time. With the autoencoder approach able
to train 4 and 20 times faster than the two matrix factorisation
approaches it allows it to consume much more of the recent
QoS data and keep up to data with changing QoS values, which
will increase the accuracy of predictions.

The second result of this paper focused on the improvement
in request time that can be achieved using an autoencoder
approach at the edge compared to other approaches that are
deployed in the cloud. This allow the algorithm to retrain
faster taking into account the latest values by users in the
environment. This reduction in time is especially critical in
dynamic service recompositions caused by increased workload
or network delay. An LSTM based neural network in the
prediction engine is used to forecast if one of the services may
be about to fail or degrade in quality [29]. This forecast is one
timestep ahead so relies on being able to receiving predictions
about the QoS of candidate services in the environment quickly

to recompose the application with suitable services. We have
shown how the use of an autoencoder on an embedded GPU
at the edge of the network can reduce the request speed by 5
times compared to traditional cloud based approaches.

We also proposed an evaluation method using the predic-
tions from the algorithms as part of a service composition in
addition to comparing the actual and predicted values using
standard error metrics. This gives a more realistic evaluation
of the impact that the predictions will have when used in a
composition. We can see that for low matrix densities, which
we would expect in an IoT environment the autoencoder ap-
proach is able to make accurate service compositions even with
reduced training time. At the moment we are using a greedy-
based service composition, however we will explore alternative
composition models to evaluate how they impact the final
composition when using predicted values. We will publicly
release these composition models to allow the community to
evaluate future approaches in a more realistic manner.

As part of our future work we are investigating alternative
methods of training autoencoders without the user giving
access to their data. By training the algorithm at the edge we
can use federated learning to download a master model from
the cloud and train the model on edge devices. Users then do
not have to upload their data to the cloud but only the changes
in gradient to the model when trained on their data, which
can be encrypted. This new method of training would allow
for conformation to GDPR, while also providing accurate QoS
predictions. The deep edge architecture that we discuss in this
paper allows for a range of alternative training approaches
such as federated learning and distributed optimisation. The
improved QoS and deep edges can allow for future methods
of interacting with services using augmented reality [44].

ACKNOWLEDGMENT

This work was funded by Science Foundation Ireland (SFI)
under grant 13/IA/1885. The Jetson Tx2 used for this research
was donated by the NVIDIA Corporation.

REFERENCES

[1] H. Bauer, M. Patel, and J. Veira, “The internet of things: Sizing up the
opportunity,” McKinsey, 2014.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Comm. Surveys Tutorials, vol. 17,
no. 4, pp. 2347–2376, 2015.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

79

[3] Y. Yin, W. Xu, Y. Xu, H. Li, and L. Yu, “Collaborative qos prediction
for mobile service with data filtering and slopeone model,” Mobile
Information Systems, vol. 2017, 2017.

[4] G. White, A. Palade, and S. Clarke, “Qos prediction for reliable service
composition in iot,” in Service-Oriented Computing – ICSOC 2017
Workshops. Springer International Publishing, 2018, pp. 149–160.

[5] Z. Zheng and M. R. Lyu, “Ws-dream: A distributed reliability as-
sessment mechanism for web services,” in Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on. IEEE, 2008, pp. 392–397.

[6] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating qos of real-world
web services,” IEEE Transactions on Services Computing, vol. 7, no. 1,
pp. 32–39, 2014.

[7] Z. Zheng, Y. Zhang, and M. R. lyu, “Cloudrank: A qos-driven com-
ponent ranking framework for cloud computing,” in Proceedings of the
2010 29th IEEE Symposium on Reliable Distributed Systems, ser. SRDS
’10, 2010, pp. 184–193.

[8] Z. Zheng et al., “Collaborative web service qos prediction via neigh-
borhood integrated matrix factorization,” IEEE Transactions on Services
Computing, vol. 6, no. 3, pp. 289–299, July 2013.

[9] G. White, A. Palade, C. Cabrera, and S. Clarke, “IoTPredict: collabora-
tive QoS prediction in IoT,” in 2018 IEEE International Conference on
Pervasive Computing and Communications (PerCom) (PerCom 2018),
Athens, Greece, Mar. 2018.

[10] Y. Zhang, Z. Zheng, and M. R. Lyu, “Wspred: A time-aware per-
sonalized qos prediction framework for web services,” in 2011 IEEE
22nd International Symposium on Software Reliability Engineering, Nov
2011, pp. 210–219.

[11] L. Yao, Q. Z. Sheng, A. Segev, and J. Yu, “Recommending web services
via combining collaborative filtering with content-based features,” in
Web Services (ICWS), 2013 IEEE 20th International Conference on.
IEEE, 2013, pp. 42–49.

[12] X. Chen, Z. Zheng, X. Liu, Z. Huang, and H. Sun, “Personalized qos-
aware web service recommendation and visualization,” IEEE Transac-
tions on Services Computing, vol. 6, no. 1, pp. 35–47, First 2013.

[13] J. Beel and S. Langer, “A comparison of offline evaluations, online eval-
uations, and user studies in the context of research-paper recommender
systems,” in Research and Advanced Technology for Digital Libraries,
Cham, 2015, pp. 153–168.

[14] N. Chen, N. Cardozo, and S. Clarke, “Goal-driven service composition
in mobile and pervasive computing,” IEEE Transactions on Services
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[15] A. Yachir et al., “Event-aware framework for dynamic services discovery
and selection in the context of ambient intelligence and internet of
things,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 1, pp. 85–102, 2016.

[16] G. Su, D. S. Rosenblum, and G. Tamburrelli, “Reliability of run-time
quality-of-service evaluation using parametric model checking,” in Pro-
ceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 73–84.

[17] Y. Huang et al., “Time-aware service ranking prediction in the internet
of things environment,” Sensors, vol. 17, no. 5, p. 974, 2017.

[18] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence, ser.
UAI’98, 1998, pp. 43–52.

[19] M. Deshpande and G. Karypis, “Item-based top-n recommendation
algorithms,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 143–177, Jan.
2004.

[20] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction for
collaborative filtering,” in Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 2007, pp. 39–46.

[21] G.-R. Xue et al., “Scalable collaborative filtering using cluster-based
smoothing,” in Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.
ACM, 2005, pp. 114–121.

[22] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization.” in
Advances in neural information processing systems, 2007, pp. 1257–
1264.

[23] P. Singla and M. Richardson, “Yes, there is a correlation: - from social
networks to personal behavior on the web,” in Proceedings of the 17th
International Conference on World Wide Web. ACM, 2008, pp. 655–
664.

[24] P. Resnick et al., “Grouplens: An open architecture for collaborative
filtering of netnews,” in Proceedings of the 1994 ACM Conference on
Computer Supported Cooperative Work. ACM, 1994, pp. 175–186.

[25] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommendation
via exploiting location and qos information,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 7, July 2014.

[26] J. Xu, Z. Zheng, and M. R. Lyu, “Web service personalized quality
of service prediction via reputation-based matrix factorization,” IEEE
Transactions on Reliability, vol. 65, no. 1, pp. 28–37, March 2016.

[27] L. V. Thinh, “Qos prediction for web services based on
restricted boltzmann machines,” Journal of Service Science Research,
vol. 9, no. 2, pp. 197–217, Dec 2017. [Online]. Available:
https://doi.org/10.1007/s12927-017-0010-6

[28] G. White and S. Clarke, “Smart cities with deep edges,” in ECML
International Workshop on Urban Reasoning, 2018.

[29] G. White, A. Palade, and S. Clarke, “Forecasting qos attributes using
lstm networks,” in 2018 International Joint Conference on Neural
Networks (IJCNN), 2018.

[30] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in
Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’13. New
York, NY, USA: ACM, 2013, pp. 139–152. [Online]. Available:
http://doi.acm.org/10.1145/2462456.2464440

[31] N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, and B. Amos, “Privacy
mediators: Helping iot cross the chasm,” ser. HotMobile ’16. New York,
NY, USA: ACM, 2016, pp. 39–44.

[32] G. White, V. Nallur, and S. Clarke, “Quality of service
approaches in iot: A systematic mapping,” Journal of Systems
and Software, vol. 132, pp. 186 – 203, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016412121730105X

[33] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
1999.

[34] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

[35] J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, and A. Madabhushi,
“Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer
histopathology images,” IEEE Transactions on Medical Imaging, vol. 35,
no. 1, pp. 119–130, Jan 2016.

[36] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in Proceedings of
the 28th international conference on machine learning (ICML-11), 2011,
pp. 513–520.

[37] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information
processing systems, 2007, pp. 153–160.

[38] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proceedings of the 25th International Conference on Machine
Learning, ser. ICML ’08, 2008, pp. 1096–1103. [Online]. Available:
http://doi.acm.org/10.1145/1390156.1390294

[39] P. Vincent et al., “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion,”
J. Mach. Learn. Res., vol. 11, pp. 3371–3408, Dec. 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1756006.1953039

[40] N. Srivastava et al., “Dropout: A simple way to prevent
neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[41] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” CoRR, vol. abs/1605.07678,
2016. [Online]. Available: http://arxiv.org/abs/1605.07678

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[43] M. Mirahsan, R. Schoenen, and H. Yanikomeroglu, “Hethetnets: Hetero-
geneous traffic distribution in heterogeneous wireless cellular networks,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp.
2252–2265, 2015.

[44] G. White, C. Cabrera, A. Palade, and S. Clarke, “Augmented reality
in iot,” in Service-Oriented Computing: 16th International Conference,
ICSOC 2018, Workshop (CIoTs), Hangzhou, Zhejiang, China, November
12-15, 2018, Proceedings. Springer International Publishing, 2018.

2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)

80

