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Abstract—Wearable devices have been used widely for human
activity recognition in the field of pervasive computing. One
big area of in this research is the recognition of activities of
daily living where especially inertial and interaction sensors like
RFID tags and scanners have been used. An issue that may arise
when using interaction sensors is a lack of certainty. A positive
signal from an interaction sensor is not necessarily caused by
a performed activity e.g. when an object is only touched but
no interaction occurred afterwards. In our work, we aim to
overcome this limitation and present a multi-modal egocentric-
based activity recognition approach which is able to recognize the
critical activities by looking at movement and object information
at the same time. We present our results of combining inertial
and video features to recognize human activities on different
types of scenarios where we achieve a F1-measure up to 79.6%.

Index Terms—activity recognition, machine learning, computer
vision

I. INTRODUCTION

Human Activity Recognition is an active field of research
in pervasive computing [1]–[3]. One popular task of this field
is the recognition of so called activities of daily living [4].
Especially in the field of health care and nursing, recognizing
such activities becomes increasingly important as the cost for
care increases [5], [6]. The detection of these activities poses
a difficult problem and proposed solutions often rely on smart
homes with many sensors in the environment. We propose the
usage of off-the-shelf smart-devices to recognize such activi-
ties, where we rely on inertial sensors and an ego-centric cam-
era. Several studies already investigate activity recognition, be
it low-level [2], [7] or high-level activities [3], [8]. Usually, the
former comprises actions like walking where the latter refers to
context-enriched actions such as preparing food. Their results
show on one hand that object-based activity recognition is
the most promising vision-based approach [9] but on the
other hand that the object recognition itself is error-prone and
crucial in respect of the recognition quality [8]. In contrast,
inertial-based activity recognition approaches perform poorly
for high-level tasks, but are reliable for low-level activities
which also include the tracking of the users arm [7]. For that
reason, researchers started to shift to the idea of fusing this
information. Approaches for fusing inertial and vision sensor
have been made by other researchers [10]. However, most of
the work focuses on the fusion of sensor streams that belong to

the same on-body position [3], [11]. In this paper, we present
a multi-modal ego-centric activity recognition approach that
relies on smart-watches and smart-glasses to recognize high-
level activities like activities of daily living. Particularly, we
consider the inertial data of our smart-watch to derive the
movement pattern of the forearm where in turn the egocentric
video from smart-glasses provides information about objects.
In this context, we aim to investigate to what extend vision
information can improve the recognition of activities that are
hard to recognize purely through motion sensing. We present
our results of a multi-modal activity recognition approach
based on manually annotated recordings as well as on a similar
public dataset. Ideas for this paper were presented in a previous
Work-In-Progress paper [12] and extended and implemented
in this work. Our contributions in this publications are:

1) We collected a new dataset with two subjects performing
a set of activities in two different environments with a
focus on activities that are hard to distinguish as they
involve similar motions (e.g. eating and drinking) and
are often interleaved.

2) We present a new method for multi-modal activity
recognition, utilizing deep learning models for object
detection and evaluating this method on our presented
dataset, achieving a F1-measure of 79.6%.

II. RELATED WORK

There are several methodologies from the domains of image
and video processing targeting sub-problems of our research
question. These approaches have shown to perform well in
their respective applications. In the following, we summarize
methods that can be used to support multi-modal activity
recognition, namely separate methods for vision and inertial
data and solutions for combining them.

A. Image object detection

Recently, there have been advances in deep and neural
network based object detection where especially the Ten-
sorFlow Object Detection API1 achieves promising results.
Many different neural network architectures are available and
have their separate advantages, offering trade-offs between

1https://github.com/tensorflow/models/tree/master/object detection
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performance and run-time. In our case, we rely on a ResNet
FPN model as described in [13], as the reported performance
of 35% mAP is still among the best offered, while having the
advantage of a significantly lower run-time compared to the
state-of-the-art network (1833ms vs. 76ms).

B. Activity recognition based on objects
Researchers have been using object information for activity

recognition, especially when considering complex activities
like cooking [14], [15]. For this purpose, the occurrence of
objects and possibly the interaction with them is used to
recognize an activity. Similarly, Lei et al. [16] build their
system on a RGB-D camera system, detecting activities in a
kitchen environment, focusing on the recognition of actions as
well as objects with tracking and detection methods. Adding
a camera to a wrist-worn sensor is another approach for
detecting activities and was analyzed by Lei et al. [17]. A wrist
worn camera has the benefit of having interactions with objects
always in frame in addition to having a camera movement
that corresponds to the hand movement of a test subject. One
drawback from image based recognition is a limited field of
view. When an activity occurs that is not fully captured within
the video, the information is lost to a system. Therefore, we
also look at inertial data, which is another modality that has
been analyzed by many.

C. Activity recognition based on inertial data
Especially with the rise of smart-devices, researchers fo-

cused greatly on using inertial sensors for recognizing activ-
ities (in this case inertial data refers to acceleration, gyration
and magnetic field data). Sliding windows in combination
with acceleration data is a typical method to predict activities
and has been analyzed by many researchers before [2], [18].
Especially activities like walking, jogging, and climbing stairs
have been predicted successfully. Features that are calculated
from these windows are often from the time and frequency
domain and may contain statistical values like mean and
variance but also more computationally expensive features like
energy [2]. Apart from cyclic activities, there is also research
involving inertial data that is focused on detecting short
activities or events like falling [19], [20]. Falling however, is an
activity with a unique motion that is hard to mix up with other
activities of everyday living, thus these methods may not fully
work in our scenario. Finally, for classification, classifiers that
are commonly used are Decision Trees [18], Hidden Markov
Models [21], and kNN [22] and recently Neural Networks
[23]. In our work, we rely on a sliding window approach,
similar to [2]. But in contrast to low-level activities, where
the window size can be fairly long, we rely on short windows
with greater overlap between consecutive windows, capturing
the short nature of the activities. For our final goal of fusing
together modalities, we also look at methods for multi-modal
activity recognition.

D. Multi-modal activity recognition
Previous work has combined multiple sensors to create and

analyze multi-modal datasets [14], [24]. Scenarios recorded

in the datasets vary greatly and involve activities such as
office work [24], sport activities [25], and cooking [14]. On
top of these datasets, researchers tested different methods to
recognize activities. One problem that is central in dealing with
multi-modal datasets is the fusion of sensors with different
sampling rates where a prominent example is the fusion of
vision data with inertial data. Inertial data is usually sampled
at a higher rate than video data, especially when using off
the shelf sensors. Spriggs et al. [10] solved this problem by
downsampling the inertial data to the capture rate of the video,
thus having a one to one mapping of frames to single inertial
measurements. When dealing with windowed feature, some of
these problems can be mitigated. If windows are defined by
timespans rather than by number of instances, merging them
together can be simpler, when for example the same window
size has been chosen. Another issue when dealing with multi-
modal data is the fusion method. Song et al. [24] published
their ego-centric multi-modal dataset which contains video
data from smart-glasses along with inertial data from the same
device. To recognize life-logging activities, they developed and
presented a fusion method for inertial and video data based in
Fisher Kernels. In this work, we rely on a windowing approach
based on timespans for both of our modalities which allows
us to fuse data both early and late.

III. DATASET

In our work, we consider two different datasets for evalu-
ating our methods. The first dataset was collected by us and
contains a set of activities that are hard to distinguish due
to similar motions and often very short duration. The second
dataset (CMU-MMAC) contains a wider variety of activities
with more test subjects.

A. ADL dataset

To evaluate our methods, we recorded the ego-centric view
of two subjects in a common home by smart-glasses and a
chest mounted tablet as well as a third person camera recording
the whole scenario. The subjects were also equipped with
smart-watches and smart-phones to capture the movement
of their arms and thigh, i.e., we recorded for all devices
acceleration, gyration, and magnetic field data simultaneously.
The subjects performed common and interleaved activities
which include drinking (A1), eating (A2), taking medicine
(A3), preparing meal (A4), taking snack (A5), and wipe mouth
(A6). The sequence of activities was predefined and performed
twice, once in a natural fashion and another time with artificial
breaks between activities. Overall, we recorded six sessions
per subject which reflects 30 minutes of activities.

The required data was collected using customary smart-
devices2 (see Figure 1) which were attached to the head (P1),
the left (P2) and right (P3) wrist, the chest (P4), and also to
the left (P5) and right (P6) thigh. Video and inertial data was
recorded with a resolution of 1920x1080 (25fps) and 50Hz,
respectively.

2“Vuzix M100” (Glasses), “LG G Watch R” (Watch), “Tango” (Tablet),
“Samsung Galaxy S4” (Phone)
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Fig. 1: Sensor placement. The subject wears the wearable
devices on the head, chest, forearm, and thigh (top down).

Subsequently, we annotated the video recordings manually,
i.e., we labeled on an activity level the start and stop times of
the performed activities using third person video recordings
and Boris [26]. On an object level, we drew the required
bounding boxes around the visible objects within the ego-
centric video of the smart-glasses, annotating 14 objects in-
cluding bread, napkin, glass, knife, pillbox, and both hands
with Vatic [27].

Our labeled dataset is publicly available including a detailed
description and images of each subject and the environment3.

B. CMU-MMAC - Quality of Life dataset

The Quality of Life dataset [14] was created by the Carnegie
Mellon University and contains a fairly large set of test
subjects, cooking a variety of recipes. Recordings consist
of different modalities such as first person overhead video,
inertial measurement units that record acceleration, gyration,
and magnetic field data on different body positions, audio from
five different microphones, and in some cases even motion
capturing data.

For our analysis, we focused on a subset of recipes, the
brownie recipe, as labels for these recordings are provided on
the website. One challenge within the dataset is the complexity
of the labels. These are given in the form of verb-object1-
preposition-object2, with the brownie recipe consisting of 14
different verbs, 34 different objects and 6 different preposi-
tions. Overall, we counted 43 different labels in the subset
we considered. Given the dataset size, building a multi-class
model for 43 labels is not feasible. Therefore, we consider
only the verb part of the activity as our target class, reducing
the amount of classes to 14.

3https://sensor.informatik.uni-mannheim.de/#dataset egocentric

In total we looked at 13 different subjects, considering the
overhead camera frames and the acceleration data on both arms
in our analysis.

IV. METHODS

A. Acceleration data

For the acceleration information we considered the data
from both smart-watches, as we aim to use a minimal amount
of sensors to recognize activities. Initially, we planned to only
consider data form the dominant hand of the test subjects,
but as activities were often performed with a mix of both
hands, we decided to use both. We transform the raw data into
window features both from the time and frequency domain
that can be seen in Table I. The windows have a length of
1000ms and an overlap of 75% and are created for each
watch separately. With an overlap of this size, we make sure
that the image windows and the inertial windows can be
mapped. Inertial data on its own may be sufficient to recognize
motions like raising an arm, but to properly detect the different
activities, we also have to consider the visual information.

TABLE I: Set of features from acceleration data. Features are
in the time and frequency domain.

Time domain Frequency domain

Mean, Median, Standard Devia-
tion, Variance, Inter Quantil Range,
MAD, Kurtosis, Correlation Co-
efficient, Gravity, Orientation, En-
tropy

Energy, Entropy, MeanDC

B. Video

All features in our model are based around object informa-
tion within the frames. A main factor for detecting activities,
is the interaction of the test subject with objects. We assume
that interaction with different objects is a good indicator for an
activity and were able to see this in initial experiments. Thus,
we try to estimate interactions by looking at objects overlap
with a detected hand using a pre-trained neural network. We
first pre-filter the frames and only consider those, that contain
a positive detection for a hand (person class in the pre-trained
network). Within these frames, we calculate the overlap of
each detected object’s bounding box with the hand’s bounding
box. The result is a vector of overlap percentages for all
detectable classes with the rest of the frames receiving a vector
of the same size with all values set to negative one.

To transform these vectors to windows, we calculate the
average overlap of each object with the hand within each
window where the window size is ten and the stride is five.
By applying this approach, we try to work around movements
of the arm within a sequence that generate an overlap with
objects for a short period of time (e.g. when the arm passes
over an object to get to another one). The whole process of
extracting vision features is described in Figure 2.

To evaluate the approach further, we ran the experiments
on learned image features as well as on the annotation ground
truth data.
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Fig. 2: Pipeline for the image feature generation

C. Combining both modalities

With both modalities we can estimate the overall sequence
of activities. For that purpose, we define a method to combine
both results into one classification. Before we combine the
data, we first have to align both modalities as, at least in
our dataset, the timestamps are not synched. After each of
the three modalities was aligned, we consider the biggest
overlap in time of the three sensors as our training and testing
data. From the trimmed data we calculate our features like
described before. In an initial approach we test early fusion, by
concatenating the feature vectors and learning a model. Then,
we also apply late fusion learning. First we assign each vision
window the corresponding IMU windows that occurred at the
same period of time. We merge both IMU windows into one
feature vector and apply a learning algorithm. Simultaneously,
we learn a model for the image window. For both windows we
return the class probabilities and append them to the feature
vectors. We then use another learning algorithm on top of both
vectors concatenated together. For more insights, we evaluated
the combination as well as both sensors separately in our
experiments section.

V. EXPERIMENTS

A. ADL dataset

For the experiments, we consider each subject separately
and test our model with a 10-fold cross-validation. To test
for stability, we run each cross validation 100 times with
different folds and check for similar results. We tested a set
of different configurations in respect to their performance to
evaluate the influence of each modality and how they behave
on their own. Configuration parameters include the classifier
that is used for the late fusion learning, which modalities are
used and which vision is assumed. These vision options are
the ground truth object data or the detection results of the
pre-trained neural network. For classification, we use Random
Forest and Logistic Regression algorithms. When we consider
all modalities, the classifiers used for the separate sensors are
Random Forest for acceleration data and Logistic Regression
for vision data. This way we keep the single modalities fixed
and only change the fusion learning algorithm, reporting its
performance.

TABLE II: Different configurations for our learning method.
Values are reported as an average over all classes and for
both subjects. RF = Random Forest, LR = Logistic Regression,
ALL = both modalities were used, VIS = only vision features,
IMU = only acceleration features, GT = ground truth vision,
LEARN = vision features that have been detected by our
neural network.

Config Precision Recall F1-measure

RF ALL GT 0.843 0.754 0.796
LR ALL GT 0.897 0.753 0.819

RF ALL LEARN 0.816 0.709 0.758
LR ALL LEARN 0.880 0.722 0.793

RF IMU 0.673 0.556 0.609
LR IMU 0.516 0.392 0.446

RF VIS GT 0.872 0.622 0.726
LR VIS GT 0.855 0.590 0.698

RF VIS LEARN 0.506 0.367 0.425
LR VIS LEARN 0.721 0.337 0.460

Using a sliding window approach with overlap poses the
problem that two consecutive windows may end up in the
training and in the testing set respectively. To avoid this, we
sampled our data, depending on which modalities we evaluate,
making sure that no data is present in training and testing
simultaneously. In our vision and combined approach, the
main point of reference is the image window. As it has an
overlap of 50%, we consider every other vision-window and
the attached IMU window as our dataset. When considering
only acceleration data, the overlap of windows is 75%, thus
we consider every fourth window in the experiments. We used
a five-fold validation in these scenarios due to the amount of
data available. Results are reported as an average of both test
subjects.

In Table II, we can see that the best configuration uses
all modalities and Logistic Regression as the fusion learning
algorithm, yielding a F1-measure of 79.3%. It can be seen,
that results for vision improve greatly when assuming a
perfect vision algorithm. The gap in performance is therefore
attributed to the current state of object detection algorithms.
When looking at the results of inertial data classification, the
difference in performance among the learning algorithms is
more emphasized. Overall, the results of the classification
tend to prefer a high precision at the cost of recall which
is beneficial in our scenario. Next, we examine the separate
classes and the performance for each class using the best
parameters of the previous experiment.

In Table III, the results for all classes are broken down for
each class separately. Great performance can be achieved for
the bread preparation class, with a F1-measure of 90.9%. This
makes sense, as for both modalities this class offers unique
features. In the case of inertial data, the motion of buttering
a bread is distinctively different than the other motions which
all involve some sort of grabbing and lifting motion. For the
video data, this scenario also offers unique views, as the test
subjects were looking down, focusing on their plate.

CoMoRea'19 - 15th Workshop on Context Modeling and Recognition

104



TABLE III: An closer look at the results for our best configu-
ration for each activity separately. Both vision and acceleration
features were used in combination with Logistic Regression.

Class Precision Recall F1-measure

none 0.928 0.986 0.956
drink water 0.886 0.62 0.729
eat banana 0.868 0.511 0.643
eat bread 0.867 0.749 0.804
prepare bread 0.891 0.929 0.909
take meds 0.894 0.676 0.769
wipe mouth 0.837 0.585 0.688

TABLE IV: Results for CMU-MMAC dataset. Here we used
the same method as above to evaluate our method. As we do
not have bounding-box ground truth data, we can only learn
on the output of our neural network.

Config Precision Recall F1-measure

RF ALL 0.748 0.436 0.551
LR ALL 0.738 0.482 0.584

RF IMU 0.727 0.440 0.548
LR IMU 0.230 0.115 0.153

RF VIS 0.400 0.269 0.321
LR VIS 0.395 0.236 0.295

Eating a piece of banana and wiping the mouth after the
scenario were the worst performing activities, yielding F1-
measures of 64.3% and 68.8% respectively. There are separate
reasons for both classes. In the case of eating a piece of
banana, the shortness of the activity is the main problem.
Test subjects were eating just one piece which was readily
available on the table, thus few unique features are available
to be learned. Wiping the mouth has the issue of hard to detect
objects, as napkins are often hidden underneath the plate and
hard to distinguish from the environment.

B. CMU-MMAC dataset

For the experiment of the CMU-MMAC dataset, we eval-
uated the whole dataset, among all subjects to see how well
a model can be applied among a set of subjects instead of
learning per single subject. Here we also ran the experiment
100 time and calculate the average precision and recall and
the resulting average F1-measure.

Given the harder task of the CMU-MMAC dataset, the
lower F1-measure of 58.4% (see Table IV) is not surprising.
What contributes to this fact, is the larger amount of subjects
that perform a greater set of activities, both of which adds
more variation to the data. The bad performance using the
vision features is also striking, with the performance going
down to 32.1%. This can be attributed to our reduction of
the labels to just the verb of the label. Thus, activities like
open-brownie box and open-cupboard top left are assigned
the same label, even though they are performed on very
different objects and in different situation. Vision features in
this context are relying on the objects visible in frame and
thus do not properly differentiate the different activities. When
looking at the acceleration data though, the results are fairly

TABLE V: A closer look at our best performing configuration
for the classes in the CMU-MMAC dataset. The model was
learned in a 10-fold cross-validation among all subjects.

Class Precision Recall F1-measure

close 0.516 0.062 0.111
crack 0.757 0.389 0.514
none 0.674 0.783 0.724
open 0.690 0.481 0.567
pour 0.601 0.613 0.607
put 0.752 0.460 0.571
read 0.834 0.551 0.664
spray 0.890 0.726 0.800
stir 0.744 0.811 0.776
switch on 0.859 0.630 0.727
take 0.708 0.648 0.677
twist off 0.824 0.188 0.306
twist on 0.793 0.196 0.314
walk 0.695 0.215 0.328

good. This is in line with results in [28] where it was shown
that hierarchical clustering of the activities tends to favor
activities with the same verb. Therefore, acceleration data is
able to represent similar activities in a similar fashion. We
could already see that Logistic Regression performs worse on
our dataset when applied on acceleration data. This effect is
even stronger in the CMU-MMAC dataset, most likely because
of the bigger set of labels that have to be recognized. Random
Forest behaves similar in both cases and yields good results
which is in line with previous research [2].

To look deeper into the classification results, we consider
the IMU classification results on their own and show the
performance for each class.

Table V shows our findings. Good performance can be
seen in classes like pouring and stirring with a F1-score
of 60.7% and 77.6% respectively, while generic classes like
reading or closing are not recognized very well. This is in
line with our assumption that the acceleration data is able to
distinguish specific activities (i.e. stirring involves a motion
that is very unusual compared to the others) and has problems
distinguishing verbs that are very generic.

We can see that the combination of inertial and video data
yields a better result than each sensor on its own. Depending
on the activity that should be recognized, modalities perform
differently as they are relying on the variation within the data.
Inertial data for example, may not be as expressive when the
activities that are performed are very similar in motion. Thus,
it makes sense to consider the combination of both modalities
to predict high level activities.

We also considered other sensors like infrared and depth
cameras to mitigate issues like privacy concerns with the setup.
These however, are not readily available in smart devices and
can sometimes even divulge more information than regular
cameras. Also, they are restricted in respect of their usage.
Depth cameras for instance have a minimum working distance
which impairs the usage in many scenarios. We believe that
privacy concerns can be reduced when an application is only
used in specific contexts like specific rooms. Here the usage of
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smart devices can really help as they can be turned off based
on such a context switches.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a new multi-modal dataset that
includes activities of daily living. Then, we present a method
for recognizing activities by using window features and fusion,
based on acceleration- and ego-centric video data. This way we
were able to achieve a F1-measure of 79.6% on our presented
dataset and 58.4% on the CMU Multi-Modal Activity dataset.
Both scenarios pose different challenges for our approach.
For our dataset the similarity of the activities is challenging,
while the CMU-MMAC dataset contains a wider variety of
activities by a greater number of subjects. We can show that
our approach is promising for the recognition of activities
in a multi-modal setting, including the usage of off-the-shelf
sensors build into smart-devices. Future work in this field can
be done in multiple directions. It is obvious that gyration and
magnetic field information may also be included for inertial
analysis, as inertial measurement units often record these
modalities simultaneously. Extending the vision features is
another direction. More complex methods like object tracking
can be employed, thus containing more in depth information
about the motion. Finally, the method for fusing the modalities
can be analyzed in more depth e.g. using different window
lengths and methods of voting and boosting to learn a final
model
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