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Abstract—Thermal images are widely used to various health-
care applications. However, thermal images captured by smart-
phone thermal cameras have insufficient accuracy to monitor
human body temperature. In this paper, we propose an offset
correction method for thermal images captured by smartphone
thermal cameras. We fully utilize the characteristic which is
specific to thermal cameras: the relative temperatures in a single
thermal image are highly reliable although the absolute tempera-
tures fluctuate frequently. Our method combines thermal images
with a reliable absolute temperature obtained by a wristband
sensor based on the above characteristic. The evaluation result
shows that the mean absolute error and the standard deviation
of face temperature decrease by 26.2% and 70.1%, respectively,
highlighting the effectiveness of the proposed method.

Index Terms—thermal camera, wristband sensor, offset cor-
rection, skin temperature, smartphone

I. INTRODUCTION

Human skin temperature is one of the key vital signs to
detect heat strokes and infections. In addition, psychological
states, for example, cognitive load [1], thermal comfort [2],
[3], stress [4] and emotion [5], are estimated by monitoring the
skin temperature. Although some wearable devices with skin
temperature sensors are available (e.g. E4 wristband [6] and
Microsoft band 2 [7]), their applications are still limited due
to the limitation of single point measurement. For this reason,
thermal cameras are widely used to monitor the skin tem-
perature because they can measure temperature distributions
quickly without physical contact. Recently, thermal cameras
are easy to use because low-cost and minimized models are
available on the market. For example, FLIR ONE [8] is a low-
cost thermal camera which is attached to a smartphone. Thanks
to such smartphone thermal cameras, we can measure our skin
temperature anytime anywhere. However, the accuracy of the
low-cost thermal camera is insufficient to monitor the skin
temperature compared with the high-end models.

Thermal cameras are categorized into two types: those with
cooled infrared detectors and those with uncooled infrared
detectors [9]. The performance of the cooled detectors is much
higher than the other although they are bulky and expen-
sive due to the cooling apparatus. Therefore, the smartphone
thermal cameras are with uncooled infrared detectors. The
uncooled infrared detector element converts its temperature
rise to electric signals. The temperature of the object prin-
cipally calculated from the signals and its emissivity. The
measured temperature greatly fluctuates in accordance with
the parameters configured by the user, the rising temperature

of the camera’s body, the efficiency of the element, and the
packaging method [9]. By these effects, the measurement error
of the smartphone thermal camera is larger than the high end
one. For example, the error range is ±3◦C or ±5%, which
is larger than the range of human skin temperature changes
in daily life. This is clearly not enough for various healthcare
applications.

To overcome this problem, we propose an offset correction
method for thermal images captured by smartphone thermal
cameras. We fully utilize the key feature of the thermal
cameras: the measurement fluctuation is mainly caused by the
offset which is common in all the pixels in a single thermal
image. In other words, we can measure the difference of
temperature correctly between any pair of pixels in the same
thermal image even using the smartphone thermal camera.
Our method combines thermal images with a reliable absolute
temperature obtained by a wristband sensor based on the above
feature. First, we obtain a thermal image including a reference
point (a wrist or a palm) of which absolute temperature is
measured by a wearable device (a wristband sensor). Second,
we estimate the offset at the reference point by comparing
the temperature measured by the thermal camera and the
wristband sensor. Finally, our method corrects temperature in
the thermal image by adding the offset to all the pixels.

Since the wristband sensor covers the measurement point,
the thermal camera cannot directly capture the temperature of
the same point. Therefore, we define the reference point as the
point which has a high correlation with the point measured by
the wristband sensor. In this paper, we use a palm or a wrist
for the reference point and compare the performance through
the real experiment.

The main contributions of this paper are summarized as
below:

• We propose an offset correction method for thermal
images measured by a smartphone thermal camera by
using a reference point combined with the specific feature
of thermal cameras.

• We investigate the design of the reference point correlated
with the wrist temperature obtained by the wristband
sensor.

• We compare the two reference points and discuss their
features through the real data with 871 samples collected
from 9 subjects.
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II. RELATED WORKS

A. Applications Using Skin Temperature

There are some research works to estimate human mental
state using skin temperature. Chernyshov et al. [10] present the
system for tracking positive cognitive and emotional states by
using temperature sensors on eyeglasses. Genno et al. [4] use
facial skin temperature to evaluate stress and fatigue. They
revealed the fatigue is the load of the stress by assuming the
estimation formula. Understanding the stress of human is a
crucial issue in our society. Recently, Japanese companies are
obligated to conduct the stress check test for the employees
by law. Smartphone thermal cameras are one of the key tech-
nologies to record the stress levels ubiquitously, noninvasively
and automatically.

B. Applications Using Thermal Camera

Thermal cameras are recently used for the estimation of
human thermal comfort. Burzo et al. [3] divide the thermal
comfort into three levels: ”hot discomfort”, ”comfort” and
”cold discomfort” and combine other biosensors with a ther-
mal camera to estimate the thermal comfort. Ranjan et al. [2]
estimate the thermal sense using thermal images and propose
a method to reduce energy consumption in buildings. Also,
Abdelrahman et al. [1] present an unobtrusive indicator of
users cognitive load based on thermal images by monitoring
forehead and nose temperature. Pavlidis et al. [11] detect lies
based on bloodstream increase estimated by thermal images.
López et al. [12] and Basu et al. [5] propose methods to
estimate human emotion by facial temperature distribution.
Thermal cameras are also useful to measure such psycholog-
ical states since they do not disturb user behavior.

However, most of the existing works use high-end thermal
cameras. In reality, we can not always use such high-end
thermal cameras, causing the problem of frequent fluctuation
in measurement by low cost (i.e. smartphone) thermal cameras.

C. Calibration of Thermal Cameras

There are several factors causing errors on the thermal
camera. The emissivity of a target object is one of the factors,
which is the efficiency of the surface in thermal energy
emission. The emissivity is a specific parameter dependent
on a component of substance. Mitchell [13] et al. reported
the difference of the emissivity of human skin is 0.95 – 0.99,
caused by the difference of the blood flow and skin color. This
4% difference leads to ±0.25◦C error in the measurement
of skin temperature. In order to determine the emissivity, it
is necessary to measure the temperature of an object whose
emissivity is known, such as black body tape [14]. However,
the correction of the other factors is still challenging. Electrical
noise and noise due to fluctuation in the scaling of thermal
energy are the remaining major factors. To mitigate these
effects, we essentially need high-end thermal cameras if we do
not rely on any additional devices. Our method tackles with
this challenge by a combination of a wristband sensor and a
smartphone thermal camera.

Fig. 1. Overview of the offset correction.

Fig. 2. Position difference of visible and thermal cameras.

III. CORRECTION METHOD

A. Overview

Fig. 1 shows an overview of our method. We assume a
user wears a wristband sensor such as E4 sensor to measure
her wrist skin temperature in real time. The input is wrist
temperature measured by the wristband, a visible image, and
a thermal image. We extract the skin temperature of body parts
from the thermal image by using image processing techniques.
To do this, we apply pre-processing to match each pixel in
the visible image with the temperature in the thermal image.
Based on linear regression, the reference point temperature is
estimated from the temperature of the wrist. By comparing the
reference point temperature measured by the wristband sensor
and the thermal image, we estimate the offset. Finally, we
obtain the target point temperature by adding the offset to the
thermal image.

B. Image Pre-processing

As shown in Fig. 2 the visible image and the thermal image
have slightly different views due to the difference between

WristSense'19 - Workshop on Sensing Systems and Applications using Wrist Worn Smart Devices

166



Fig. 3. Result of overlapping.

Fig. 4. Image pre-processing steps.

camera positions. This means, for example, the palm pixels
in the visible image are not exactly equivalent to those in the
thermal image. Therefore, if we recognize a target region (e.g.
a palm) in the visible image and then obtain the temperature
distribution of the area from the thermal image, the distribution
wrongly contains temperature of different parts. Fig. 3 shows
that this problem greatly affects temperature extraction espe-
cially for a small part such as a fingertip and a nose. Also, the
position difference has a large impact on feature extraction
from the distribution such as min and max. Therefore, we
apply image pre-processing to match each pixel in the visible
image with its correct temperature in the thermal image.

In the pre-processing, the key idea is that both images
share almost the same edges. Fig. 4 shows the steps in
the pre-processing. First, edge detection using the Canny
algorithm [15] is performed on both images. Smoothing based
on a Gaussian filter is applied to both images after edge
detection. Finally, Normalized Cross-Correlation [16] is used
for template matching.

C. Reference Point Temperature Extraction

The temperature of any pixel in the visible image can be
extracted from the thermal image after the pre-processing.
In this paper, we propose two reference points close to the
wristband. One is a palm and the other is a wrist around
the wristband. In the following sections, we describe the
temperature extraction for each reference point.

1) Palm Temperature Extraction: We extract a palm from a
visible image based on skin color as shown in Fig. 5 because
it is difficult to detect hands from thermal images. This is
because the skin is easily cooled by the atmosphere in the
cold environment and it is assimilated into the background in
the thermal image.

We use an object detector using OpenCV based on Haar-
like feature [17] to detect a palm from a visible image. The
position of the palm can be obtained as a rectangle. Since we

Fig. 5. Palm region extraction.

Fig. 6. Flow of wrist temperature extraction.

can obtain the area including other parts such as a background
and clothing, we need to further extract the palm region. For
this purpose, we use an approach for human skin detection
proposed by Tan et al. [18]. We use the green value of RGB
color space and the saturation value of HSV color space [19]
to obtain a squared histogram of color values in the face. We
regard a pixel whose distance from the center of the smoothed
histogram [20] is within 3 times of the standard deviation as
a skin pixel. We extract the temperature of the skin pixel and
calculate the average of the temperatures as a palm temperature
Tpalm meas. The definition is given as

Tpalm meas =

∑
(x,y)∈P T (x, y)

|P |
, (1)

where (x, y) is a coordinate in a visible image and P is a set
of the extracted skin pixels. Also, T (x, y) is the temperature
of (x, y) and |X| is the number of elements in the set X . P
is defined as

P = {(x, y)|(x, y) ∈ Rhand ∩ Chand}, (2)

where Rhand is a set of coordinates in the detected palm
rectangle and Chand is a set of coordinates whose colors are
regarded as skin.

2) Wrist Temperature Extraction: We extract a wrist from a
visible image based on the wristband color. Different from the
palm detector implemented in OpenCV, we need to implement
the wristband detector. In this paper, we manually extracted
rough positions of the wristband. However, we note that this
may be easily achieved by attaching a special marker or
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Fig. 7. Cluster thermal image pixels.

collecting training data. The flow of the wrist temperature
extraction is shown in Fig. 6. First, to highlight the wristband,
we conduct threshold processing based on the hue value from
HSV color space. Next, we conduct edge detection, enclose
the detected edges in a rectangle, and extract temperatures in
the enclosed box from corresponding pixels of thermal images.
Finally, we extract wrist temperature Twrist meas by calculating
the average of the top 10% in the temperature distribution.
Twrist meas is defined as

Twrist meas =

∑
(x,y)∈W T (x, y)

|W |
, (3)

where W is a set of the wrist coordinates which is defined as

W = {(x, y)|(x, y) ∈ Rwrist ∩ Cwrist}. (4)

In the above equation, Rwrist is a set of coordinates in the
enclosed box of the wristband and Cwrist is a set of coordinates
whose temperature is in the top 10%.

D. Reference Point Temperature Estimation

As we mentioned earlier, thermal cameras cannot capture
the temperature of the point measured by the wristband sensor
since it is covered by the wristband sensor itself. Therefore,
we need to correlate the wristband sensor temperature with
the temperature of the reference points. For this purpose, we
construct regression models given as

y = a+ bx, (5)

where x is an explanatory variable which is a temperature
reported by the wristband sensor, y is a target variable as
a temperature of the reference point (Test) which is a palm
(Tpalm est) or a wrist (Twrist est). a and b are parameters
determined by training data.

E. Target Part Extraction

In this paper, we select faces as the target part because the
face temperature is used in many applications [1], [2], [4],
[10]. We note that our method can be also applied to other
target parts. We use the face detector of OpenCV based on
Haar-like feature [17]. Since we can obtain a face position as
a rectangle including a background, we need to extract the
temperatures of facial skins from the thermal image. For this
purpose, k-means++ clustering [21] is applied to the thermal
image. We set the cluster size k to 2 (the face region and the
other region) and used the cluster with the higher temperature
as a face. Fig. 7 shows an example of the clustering. We

TABLE I
SPECIFICATION OF FLIR T540 AND FLIR ONE.

FLIR T540 FLIR ONE 2
IR Sensor Resolution 464× 348 160× 120
Accuracy ±1◦C or ±1% ±3◦C or ±5%

(10–35◦C) (0–35◦C)
Thermal Sensitivity 0.04◦C 0.15◦C

extract face temperature Tface by calculating the average of
face pixels. The definition is given by

Tface =

∑
(x,y)∈F T (x, y)

|F |
, (6)

where Rface is a set of coordinates in the detected face
rectangle and Cface is a set of coordinates in the face cluster.

F. Offset Correction

We obtain the corrected temperature Tcorr of the target by
adding the offset C to the temperature Ttarget of the target in
the thermal image as below.

Tcorr = Ttarget + C

C = Test − Tmeas.
(7)

The offset C is calculated for the reference point (either a palm
or a wrist) by subtracting the temperature Tmeas measured by
the thermal camera from the temperature Test estimated by the
regression. Namely, Test is either Tpalm est or Twrist est and
Tmeas is either Tpalm meas or Twrist meas.

IV. EVALUATION

A. Evaluation Settings

For evaluation, we used FLIR ONE 2 and E4 wristband
as a smartphone thermal camera and a wristband sensor,
respectively. We also used a high-end thermal camera, FLIR
T540, for the ground truth. The specifications of FLIR T540
and FLIR ONE 2 are shown in the TABLE I. E4 wristband
measures the temperature at the sampling rate of 4 Hz. We
use the mean temperature per minute for the evaluation. The
accuracy of the temperature sensor is 0.2 ◦C within 36−39 ◦C
and its thermal sensitivity is 0.02 ◦C.

We collected the real data from nine male subjects aged
the twenties for 6 hours. In the experiment, we captured both
visible and thermal images 7 times with a 10-second interval
every 30 minutes. During the experiment, the subjects were
asked to ware E4 wristbands and worked as usual in the
laboratory. They stood in front of the thermal cameras with the
palms of both hands facing toward the cameras without any
overlap as shown in Fig. 7. After removing some images which
are incorrectly captured, 871 samples (i.e. pairs of the visible
and thermal images) were collected in total. The maximum and
the minimum numbers of samples per subject are 105 and 77,
respectively. The highest and the lowest air temperatures in
the room were 30.6 ◦C and 21.9 ◦C, respectively.
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Fig. 8. Relation between wristband temperature and palm temperature.

Fig. 9. Relation between wristband temperature and wrist temperature.

B. Result

1) Reference Point Temperature Estimation: We evaluated
the performance of the temperature estimation of the reference
points by linear regression. The purpose of the experiment is to
build models to estimate the reference point temperature from
the wristband temperature. Therefore, we used the thermal
images captured by the high-end thermal camera to collect
the training data.

Fig. 8 shows the relation between the temperature measured
by the wristband and the temperature of the palm. The
regression function is given as

Tpalm est = −1.4485 + 1.0103 Twristband. (8)

The mean absolute error was 0.6460 ◦C.
On the other hand, Fig. 9 shows the relation between the

wrist temperature and the temperature around the wristband.
The regression function is given as

Twrist est = −15.6850 + 0.5418 Twristband. (9)

The mean absolute error was 0.3143 ◦C.
From the above results, we see that the temperature around

the wristband can be estimated more accurately than the
palm. This is natural because of the closeness to the point

TABLE II
RESULT OF DYNAMIC OFFSET CORRECTION.

Method MAE SD
Baseline 0.8839 1.6157
Palm referenced 0.6527 0.7071
Wrist referenced 0.7232 0.4835

Fig. 10. Error distributions of facial temperature.

measured by the wristband sensor. We further investigate the
performance of our method based on the above regression
functions in the next section.

2) Dynamic Offset Correction: Fig. 10 shows the error
distributions of the baseline (without correction), our palm
referenced method, and our wrist referenced method. We see
that the distribution approaches 0 in the palm referenced
method while the error dispersion becomes smaller in the wrist
referenced method.

Also, TABLE II shows the mean absolute error (MAE) and
the standard deviation (SD) of the baseline and our methods.
It is obvious that both of our methods reduce MAE and
SD compared to the baseline. The palm referenced method
achieves 0.2312 ◦C smaller MAE than the baseline, which is
also 0.0705 ◦C smaller than the wrist referenced method. This
is because the resolution of the smartphone thermal camera is
much smaller than the high-end one. We found that the average
temperature in a small region (e.g. a wrist) tends to become
higher when the resolution is low. The low resolution leads to
the difficulty in capturing the correct temperature distribution
in a small region. On the other hand, the wrist referenced
method achieves smaller SD than the other. This is because
the accuracy of the reference point temperature estimation for
the wrist is higher than the palm.

We note that the outliers of the baseline are difficult to
remove by filtering such as smoothing over time. Fig. 11
shows the change of temperature measurement over time.
We continuously recorded the images of a subject for 10
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Fig. 11. Temperature change over time.

minutes. Even if we remove some large fluctuations of the
baseline as outliers, there still remains larger error than our
method. This is because the error characteristic of smartphone
thermal cameras is unpredictable and sometimes biased due
to environmental factors such as the camera body temperature
itself.

From the above results, the palm referenced method is
suitable for accuracy while the wrist referenced method is
suitable for high precision. In practice, the accuracy may
be more important for many applications. For example, the
applications for cognitive load estimation [1] and thermal
comfort estimation [2] need to capture temporal changes
and differences among different persons. However, if we can
mitigate the low-resolution effect of the smartphone thermal
camera, the wrist referenced method may achieve better in
terms of both accuracy and precision.

V. CONCLUSION

In this paper, we presented dynamic offset correction for
a smartphone thermal camera using a wristband sensor for
low cost and accurate temperature monitoring. The design of
our method is based on the key feature that the measurement
fluctuation of the thermal cameras is due to the offset which
is common in all the pixels in a single thermal image. Our
method estimates the temperature of the reference point by
regression from the wristband temperature measurement. We
selected a palm and a wrist for the reference points for
comparison. Through the real experiment with 871 samples
from 9 subjects, we confirmed that the palm referenced method
is better than the wrist referenced method, showing 0.65 ◦C
MAE.

Our future work includes the improvement of the wrist
referenced method by investigating the difference of thermal
cameras especially in terms of resolution. We are also plan-
ning to apply our method for some applications to show its
effectiveness.
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