
Device to Device Collaboration for Mobile Clouds
in Drop Computing

Radu-Corneliu Marin, Alexandru Gherghina-Pestrea,
Alexandru Florin Robert Timisica, Radu-Ioan Ciobanu, Ciprian Dobre

Faculty of Automatic Control and Computers
University Politehnica of Bucharest

Emails: {radu.marin, alexandru.gherghina, robert.timisica}@smartrdi.net, {radu.ciobanu, ciprian.dobre}@cs.pub.ro

Abstract—The large number of mobile devices existing nowa-
days has led to the evolution of mobile cloud computing towards
bringing data and computations closer to the nodes. This has
manifested first in the shape of fog and edge computing, where
an additional communication and processing layer is added at the
edge of the network. However, the fast adoption of the Internet of
Things has shown the limitations of even this model, so the focus
now is moving towards another layer that is one level below: the
ad hoc network composed of the mobile devices themselves.

One paradigm based on this model is Drop Computing, where
nodes that need to do some computations first attempt to process
them through the help of neighbor devices using close-range
communication (such as Wi-Fi Direct or Bluetooth), and only
then do they attempt to contact the fog/edge nodes or the cloud
itself. In this paper, we propose an Android implementation of the
device-to-device layer of Drop Computing. On top of this imple-
mentation, we present an application that creates a video collage
from multiple photos using ffmpeg with the help of neighboring
nodes through close-range communication using the HYCCUPS
and Google Nearby frameworks. Through experiments on four
Android devices, we show that our implementation can drastically
decrease CPU usage per device, which in turn increases the
overall quality of experience for Android users. Furthermore,
the total battery consumption is lowered, since nodes have less
computations to perform and the CPU cores spend less time in
higher frequencies.

Index Terms—mobile, cloud, edge, opportunistic, Android

I. INTRODUCTION

Mobile cloud computing (MCC) has appeared as a solution
to the challenges faced by mobile devices (especially in terms
of resources such as battery life, storage, or bandwidth) due to
their limited hardware make-up and high mobility. However,
MCC only sees the mobile devices as clients that always have
to contact the cloud to obtain services. Because the large-scale
adoption of the Internet of Things has drastically increased
the number of devices that need to connect to the cloud,
alternative means of providing services to mobile users have
been proposed, such as fog and edge computing. Their aim
is to bring resources at the edge of the network, closer to
the mobile devices, but we argue that even this is not enough
nowadays. One possible way to improve this situation is to
add another layer to the fog/edge architecture, namely the
mobile network layer, where devices are able to communicate

This research is supported by NETIO project Tel-MonAer and projects
SPERO (PN-III-P2-2.1-SOL-2016-03-0046, 3Sol/2017) and ROBIN (PN-III-
P1-1.2-PCCDI-2017-0734).

with each other and collaborate to solve common goals. One
paradigm that has this behavior is Drop Computing [1], which
uses the social ties between humans to form an ad hoc network
of mobile devices as the lowest layer. At this level, devices will
opportunistically ask other nodes for help through close-range
communication, and only if this help cannot be offered will
requests to edge/fog or cloud nodes be made.

Thus, in this paper we aim to demonstrate the feasibility of
spreading a computation in the ad hoc network composed of
mobile devices through cyber foraging [2]. For this reason, we
propose and present an Android application that uses ffmpeg
to create a video collage from a group of pictures. The app
can scatter the necessary computations to a mobile cloud
created of other smartphones, so the processing is performed
in parallel on multiple devices. Through extensive testing with
four Android phones, we show that collaborations even at the
lowest level of Drop Computing are able to improve various
metrics in the mobile network (such as battery consumption
or quality of experience), thus highlighting the benefits of the
Drop Computing paradigm.

The rest of this paper is structured as follows. Section II
presents related work in the area of mobile cloud computing
and computation offloading, while Sect. III describes the Drop
Computing paradigm and its functionality. Section IV proposes
our Android application built on top of the Drop Computing
framework, and Sect. V contains a thorough analysis of
its performance on four Android devices. Finally, Sect. VI
presents our conclusions and future work.

II. RELATED WORK

The area of MCC (and of distributing computations across
the ad hoc mobile network) has gained traction in recent years,
thanks to the growth of mobile communication paradigms such
as opportunistic computing [3]. Its main advantages include
extending the battery lifetime by moving computation away
from mobile devices, better usage of data storage capacity and
of available processing power, improving the reliability and
availability of mobile apps, while also offering cloud comput-
ing benefits like dynamic provisioning and scalability [4].

One example of a mobile cloud computing framework is
proposed in [5], where users with similar goals or tasks
collaborate with each other. When a task is generated, it
is spread to the nodes in a virtual cloud, which compute

PerCrowd'19 - 2nd International Workshop on Context-Awareness for Multi-Device Pervasive and Mobile Computing

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 298

their parts and then their computations are merged into the
final results that the nodes share. The main drawback of this
solution is that it does not account for node mobility and for
device heterogeneity.

Two interesting complementary solutions are Serendipity [6]
and COSMOS [7]. The former deals with the case when
mobile devices do not have access to a cloud backend or
to edge devices at all, so they can only use each other for
computation offloading. They use a PNP job model, which
defines jobs as having a pre-processing part, a number of
parallel tasks, and a post-processing part. The first and the third
steps are executed by the job’s owner, whereas the parallel
tasks can be offloaded to nearby devices. On the other hand,
COSMOS offers computation as a service by sharing cloud
resources to mobile devices, which offload their tasks based
on network connectivity and task characteristics. The Drop
Computing framework that we propose offers computation and
data offloading on the cloud, on edge devices, or on other
mobile devices, combining the benefits of Serendipity and
COSMOS. Furthermore, task offloading on other mobile nodes
can be done over multiple hops, in an opportunistic fashion.

mCloud [8] is a code offloading framework composed of
mobile nodes, nearby cloudlets and public cloud services.
The platform considers offloading through various wireless
channels, such as Wi-Fi, 3G, Bluetooth, or Wi-Fi Direct. It
employs a multi-criteria offloading decision-making algorithm,
which takes into account energy consumption, execution time
reduction, resource availability, network conditions, and user
preferences.

III. DROP COMPUTING

The idea behind mobile cloud computing is to move com-
putations away from the mobile devices, since they face many
challenges in terms of battery life, storage, bandwidth, as
well as being affected by the high degree of mobility. These
challenges have the potential to significantly affect the quality
of service and experience perceived by the users, which is why
more powerful nodes are required. Thanks to mobile cloud
computing, a rapid provisioning for mobile applications can
be obtained with minimal management efforts [4]. However,
since the advent of the Internet of Things (IoT) and the high
increase in the number of mobile devices that require cloud
services, the classic cloud model has become insufficient. This
is the reason for the edge and fog computing paradigms, which
aim to bring computations even closer to the devices, in the
form of services hosted at the edge of networks in servers,
set-top-boxes or even access points [9], [10].

Through the Drop Computing paradigm [1], [11], we argue
that the data and computations should not be moved too far
away from the mobile devices themselves, in some cases not
even as far as the edge nodes. We believe this because, when a
large number of small devices need to communicate in general,
they all need to send requests to the cloud or to the edge,
receive replies, and then process them.

Drop Computing is based on the notion that human-carried
mobile device interactions are governed by human social

Fig. 1. Drop Computing architecture [1].

ties [12]. These relationships can positively affect commu-
nication, by helping users collaborate with the purpose of
conserving energy on each mobile device. As online social
interaction relationships among people (through their devices)
are broadened and enhanced, users can passively cooper-
ate through their connections, leading to the enabling of a
significant minimization of the computational load and the
energy consumption levels. In order to bypass the constrains
of device-to-device communication, users could exploit social
ties discovered from mobile device interactions, leveraging
other nodes for computation or data offloading [13], [14].

Drop Computing is an attempt to shift mobile communi-
cation towards a decentralized model, as shown in Fig. 1.
It runs over decentralized mobile networks formed between
mobile nodes such as smartphones (or other small devices)
and the edge devices that are part of the fog/edge cloud layer.
One level above, the cloud servers act as a third option in this
multi-layered architecture. Thus, if a user has a mobile applica-
tion that requires many computations, the current cloud-based
behavior would assume that the device sends the computations
to the cloud, waits for them to be processed, and then receives
the reply. By moving computations closer to the mobile node,
the Drop Computing framework allows devices to only go as
far as the edge of the network, where specialzed fog/edge
devices are able to perform the computations and deliver
the response much faster. Furthermore, they are even able to
cache their results (or other kinds of useful data), which can
increase the performance even more. This is obtained thanks
to the lower number of hops required to get to the processing
component, the locality of data, as well as faster failover.

Further lower than this, there is the mobile layer, composed
of other nodes co-located with the user device. They allow fast
communication speeds through close-range protocols such as
Bluetooth or Wi-Fi Direct, basically extending the capabilities
of a single device beyond the technology barrier of the local
hardware. As previously shown and demonstrated [1] (in simu-
lation), Drop Computing allows mobile nodes to transparently
access resources available in the mobile opportunistic network,
where the content is much closer to the users and computations

PerCrowd'19 - 2nd International Workshop on Context-Awareness for Multi-Device Pervasive and Mobile Computing

299

can be offloaded. Applications are decomposed into tasks that
can be executed locally, or offloaded closer to their data or to
more powerful nodes [15].

Drop Computing’s decentralized vision places people at
the heart of the computation-coordination model [1], where
social connections between them are used to select nearby
nodes that are able to help a peer through close collaborations.
Incentive mechanisms need to be in place, in order to motivate
devices to participate in the Drop Computing network and help
others who can later help in turn. A solution for incentivizing
mobile users to help others with computation offloading is
FlopCoin [16], which proposes a distributed incentive scheme
that uses a blockchain-based virtual currency. The blockhain
is deployed in cloudlets, and each mobile user has a wallet
where FlopCoins are added (through transactions) when the
device offloads for the benefit of others, and removed when it
performs an offload itself after an auction.

In this paper, we attempt to test the feasibility of the Drop
Computing paradigm at the lowest level. More specifically,
we wish to test whether it makes sense to employ close-range
nodes in performing intensive computations with a common
goal, in terms of battery consumption, quality of experience
(QoE) and computation time.

IV. PROPOSED SOLUTION

In order to highlight the benefits of Drop Computing (i.e.,
of adding an extra layer composed of mobile devices below
the edge layer), we implemented an offloading framework in
Android, based on HYCCUPS [17]. For device-to-device com-
munication, our solution uses AllJoyn1 and Google Nearby2 to
create an ad-hoc network between Android smartphones that
are in close proximity of each other. AllJoyn communication
is performed over Wi-Fi when the devices are connected to
the same access point, whereas Google Nearby communicates
over Bluetooth Low Energy (BLE) and Wi-Fi Direct, depend-
ing on the capabilities of the communicating devices and the
environment conditions.

On top of the communication framework built over AllJoyn
and Google Nearby, we also implemented an Android ap-
plication that acts as a particular use case for mobile cloud
computing in general, and Drop Computing in particular (aside
from this scenarios, other Drop Computing use cases may
include speech or face recognition, translation, or graphics
processing). The purpose of our application is to allow mobile
users to create a video collage from a list of photos. A similar
feature is present in the Google Photos application, but all the
computations are performed in the cloud. In our case, we want
to address situations where the cloud is not available (e.g.,
the device does not have Internet access) or the user wants
to avoid employing it. For this reason, the default behavior of
the video collage application is to run all computations locally,
on the user’s mobile devices. For creating the video clip, our
application uses the ffmpeg library3.

1https://openconnectivity.org/developer/reference-implementation/alljoyn
2https://developers.google.com/nearby/
3https://www.ffmpeg.org

Device 1

Device 2

Device 3

1

2

3

4

5

6

8

7

9

10

Fig. 2. Functionality of the proposed application.

However, as discussed in Sect. I, a device might not always
have the capabilities of performing certain computations itself,
or might want to offload some of them. Thus, our proposed
application also has an offloading component implemented
over the HYCCUPS and Google Nearby-based communication
framework. Our app works as shown in Fig. 2. Let us assume
that the user of device 1 has six pictures that need to be
collated into a video clip. At the first step, the app performs
a scan, looking for devices in close range (using Wi-Fi on
AllJoyn, or BLE and Wi-Fi Direct on Google Nearby). In the
example shown in Fig. 2, two other devices (2 and 3) are
found. Thus, the six pictures are scattered into groups of two
(in order), and are sent to devices 2 and 3 (shown at points
1 and 2 in Fig. 2), while the master (device 0) also keeps a
group of two photos to process itself (point 3 in Fig. 2).

After the photos have been spread evenly, each device uses
ffmpeg to process its own group, as shown at points 4, 5 and 6
in Fig. 2. Once this is done, the resulting collages are sent back
to the master node (points 7, 8 and 9), which unites the three
videos into a single file. The main goal of this application (and
of the Drop Computing paradigm) is to decrease the load on
a single device in a collaborative fashion, in order to achieve
fairness and efficiency at the mobile network level.

A similar solution was proposed by Chatzopoulos et al. [18],
who implemented an Android application that is able to
perform video compression with ffmpeg by splitting the com-
putations on multiple mobile devices, and then tested it on
two devices. In this paper, we extend the experiments to four
(newer) Android devices, while presenting another potential
use case for computation offloading in mobile scenarios.
Furthermore, we plan on augmenting our solution with edge
and cloud support.

V. EVALUATION

For evaluation of the Drop Computing offloading plat-
form, we deployed the video collage application presented in
Sect. IV on four mobile devices, as shown in Table I. We tested
the app with 10 photos of 10 megapixels each, first by collating
the photos on a single device (for the baseline run), then on
two, three and four devices, while alternating the master (i.e.,
the node that scatters the photos and then gathers and merges

PerCrowd'19 - 2nd International Workshop on Context-Awareness for Multi-Device Pervasive and Mobile Computing

300

TABLE I
TESTING DEVICES.

ID Model Android CPU
1 Google Pixel XL 9 Quad-core (2x2.15 GHz Kryo &

2x1.6 GHz Kryo)
2 Google Pixel XL 9 Quad-core (2x2.15 GHz Kryo &

2x1.6 GHz Kryo)
3 Google Pixel 2 8.1 Octa-core (4x2.35 GHz Kryo &

4x1.9 GHz Kryo)
4 Google Pixel 2 XL 8.1 Octa-core (4x2.35 GHz Kryo &

4x1.9 GHz Kryo)

TABLE II
EXPERIMENTAL RESULTS OBTAINED WHEN RUNNING THE VIDEO

COLLAGE APP ON A SINGLE DEVICE. THE DATA FROM THIS TABLE WILL
BE USED AS BASELINE FOR ALL THE OTHER EXPERIMENTS.

ID Load (%) Mcycles CPUs Mem (MB) Time (s) Bat (%)
1 88.29 6081 0.13 152.24 26.08 0.1
2 87.03 5580 0.11 131.44 25.67 0.09
3 48.06 2110 0.06 91.76 16.12 0.08
4 52.59 2458 0.07 126.96 15.51 0.07

the results). Using Android Battery Historian4, we measured
CPU load, number of megacycles consumed, number of CPUs
used for processing, RAM, duration and battery consumption.

Table II shows the baseline run for each of the four Android
devices deployed. It can be observed that, for the two Google
Pixel XL devices (i.e., with IDs 1 and 2), the processing of the
collage takes about 26 seconds, keeping the CPU in 88% load
and consuming approximately 10% of the device’s battery.
On the other hand, since the two Pixel 2 devices (normal and
XL) employ newer technology and have eight cores each with
higher clock speeds, the computation duration is considerably
lower than for the Pixel XL phones (16 seconds as opposed to
26), while also keeping the CPU load hovering around 50%.
Since the load is lower, the battery consumption is naturally
smaller, the collage processing taking 8% for the Pixel 2 and
7% for the Pixel 2 XL (which has a bigger battery).

Next, Table III shows the results of applying the solution
presented in Sect. IV to a mobile cloud composed of two
devices. As previously said, one device acts as the master that
performs a scatter-gather of the 10 photos to other devices in
range and to itself. In this case, each of the two devices gets
5 photos, and we chose to perform two tests, one with two
devices of the same kind (the two Pixel XLs) and one with
two devices with different specs (the Pixel 2 and the Pixel
2 XL), while alternating the master inside the mobile cloud.
The aggregated results for total computation time, battery
consumption and CPU load can also be observed in Fig. 3.

Table III shows several interesting things. Firstly, it can be
observed that the CPU load per device decreases considerably
for all test cases, when compared to the single-device case. For
the Pixel XL mobile cloud, the per-device load has a maximum
of 70%, whereas a single Pixel XL collating the 10 photos can
have the CPU as much as 88% loaded. One positive effect of
this is that the quality of experience (QoE) for people using
the mobile device while it is running the collage app will

4https://developer.android.com/studio/profile/battery-historian

TABLE III
EXPERIMENTAL RESULTS OBTAINED WHEN RUNNING THE VIDEO

COLLAGE APP ON TWO DEVICES. AN ASTERISK NEXT TO A DEVICE’S ID
SPECIFIES THAT IT WAS THE MASTER FOR THAT PARTICULAR USE CASE.

ID Load (%) Mcycles CPUs Mem (MB) Time (s) Bat (%)
*1 50.8 12109 0.19 144.72 32.78 0.03
2 70.96 62939 1.17 121.2 28.8 0.04

1 66.95 61098 1.31 153.71 25.16 0.05
*2 55.66 11685 0.21 167.14 29.84 0.04

*3 23.5 6871 0.14 85.74 26.39 0.03
4 28.78 55823 1.14 103.14 22.61 0.03

3 27.81 51595 1.12 84.57 22.74 0.03
*4 25.28 7053 0.15 125.56 25.81 0.04

be better, since Android behavior will be affected much less
by the processing performed in the background. Furthermore,
another positive side effect of lower CPU load is that the
overall battery consumption of the mobile cloud is lower than
the battery consumption of a single device performing the
computations all by itself. For example, a single Pixel XL
consumes 10% of its battery collating the photos (as shown
in Table II), while two Pixel XLs only used up a maximum
of 9% in total (5% on the worker and 4% on the master, as
seen in the second test from Table III). This shows that, if
we have a Drop Computing mobile cloud where devices can
collaborate and help each other with their computations (in
a “tit for tat” fashion), then the overall power consumption
of the mobile network will be lower, even if devices only
collaborate in groups of two. Similar conclusions can be drawn
from Table III for the experiments with devices 3 and 4, which
are different from each other.

One other interesting observation that can be made when
analyzing Table III is that the number of megacycles for the
non-master device in the mobile cloud is much higher than for
the master device or than for the baseline run, although other
parameters do not seem to be affected by this. However, those
extra cycles are actually NOP cycles that occur when per-
forming the close-range communication between the devices
in the mobile cloud. The only metric that is not improved
by employing Drop Computing is the overall duration of
performing the collage, because of the extra time required
by communication and synchronization between devices (our
solution increases the computation time by a maximum of
27% when dealing with two identical devices, and 70% for
the mobile cloud composed of the Pixel 2 and the Pixel 2
XL). However, this is something that becomes less and less
significant as the single-device computation duration increases,
and we would argue that the idea of mobile cloud applies
mostly to delay-tolerant computations, where a slightly higher
latency is not a dealbreaker. Nonetheless, we are working on
improving the communication overhead as much as possible.

In order to highlight the impact of the device-to-device
communication, we have also measured statistics only for the
raw ffmpeg processing when running the proposed application
on a two-node cloud with devices 3 and 4. Thus, Table IV
shows that the actual video creation process only takes about

PerCrowd'19 - 2nd International Workshop on Context-Awareness for Multi-Device Pervasive and Mobile Computing

301

TABLE IV
EXPERIMENTAL RESULTS OBTAINED WHEN RUNNING THE VIDEO

COLLAGE APP ON TWO DEVICES, WHILE ONLY LOOKING AT THE RAW
FFMPEG PROCESSING. AN ASTERISK NEXT TO A DEVICE’S ID SPECIFIES

THAT IT WAS THE MASTER FOR THAT PARTICULAR USE CASE.

ID Load (%) Mcycles CPUs Mem (MB) Time (s) Bat (%)
*3 39.22 1087 0.08 100.41 8.47 0.04
4 37.09 1237 0.07 131.95 8.93 0.03

3 34.81 1387 0.09 85.92 8.81 0.03
*4 36.33 1404 0.09 128.97 9.63 0.03

TABLE V
EXPERIMENTAL RESULTS OBTAINED WHEN RUNNING THE VIDEO

COLLAGE APP ON THREE DEVICES. AN ASTERISK NEXT TO A DEVICE’S ID
SPECIFIES THAT IT WAS THE MASTER FOR THAT PARTICULAR USE CASE.

ID Load (%) Mcycles CPUs Mem (MB) Time (s) Bat (%)
*1 55.77 14698 0.26 178.18 28.72 0.04
3 26.51 29451 0.98 84.44 13.95 0.02
4 20.73 29852 0.58 93.36 23.99 0.01

1 47.78 29406 0.78 145.97 23.01 0.01
*3 24.2 7613 0.16 83.36 25.46 0.03
4 22.98 31789 0.83 93.38 18.51 0.02

1 42.8 31570 0.69 168.09 24.61 0.02
3 22.95 28816 0.75 84.88 18.31 0.02
*4 23.56 7796 0.15 127.37 27.33 0.02

36% of the total processing time, the rest being taken up by
the communication. This further highlights our opinion that
mobile cloud computing is useful when there is a lot of data to
process, but without the need of much communication between
nodes. Furthermore, the CPU load is also considerably lower
when we account only for the video creation, and so is the
number of cycles.

Table V shows the results obtained when running the
Drop Computing-based collage application on three different
devices (i.e., we only used one of the Pixel XLs). When
compared to the baseline runs in Table II, the results (also pre-
sented in a graphical and more intuitive fashion in Fig. 3), are
similar to ones obtained with the two-device cloud. Namely,
the per-device CPU load decreases drastically, allowing for
a much better user experience on the Android phones, while
also leading to a lower overall battery consumption (since the
CPUs spend less time in high frequencies and do not overheat
so quickly). An interesting observation that can be made for
the three-device scenario is that, because there are some more
powerful devices in the mobile cloud (i.e., the Pixel 2 and the
Pixel 2 XL), lower-range devices will benefit from a higher
computation power. For example, when device 3 is the master,
the overall computation time is lower than when device 1
performs the computations by itself.

Finally, Table VI shows the results for a four-node Drop
Computing cloud. Again, it can be observed that the per-device
CPU load and the overall battery consumption are decreased,
leading to a better QoE and longer device lifetime. The
disadvantage here (as seen better in Fig. 3) is that the over-
all computation time increases, because the communication
overhead outweighs the computation duration. Thus, the con-
clusion that we draw here is that, when deciding how many

0

5

10

15

20

25

30

35

40

45

D1 o
nly

D2 o
nly

D3 o
nly

D4 o
nly

D1*
+ D

2

D1 +
 D2*

D3*
+ D

4

D3 +
 D4*

D1*
+ D

3 +
 D4

D1 +
 D3*

+ D
4

D1 +
 D3 +

 D4*

D1*
+ D

2 +
 D3 +

 D4

D1 +
 D2*

+ D
3 +

 D4

D1 +
 D2 +

 D3*
+ D

4

D1 +
 D2 +

 D3 +
 D4*

TI
M

E
(S

EC
)

TEST CASE

(a) Computation time

0

2

4

6

8

10

12

D1 o
nly

D2 o
nly

D3 o
nly

D4 o
nly

D1*
+ D

2

D1 +
 D2*

D3*
+ D

4

D3 +
 D4*

D1*
+ D

3 +
 D4

D1 +
 D3*

+ D
4

D1 +
 D3 +

 D4*

D1*
+ D

2 +
 D3 +

 D4

D1 +
 D2*

+ D
3 +

 D4

D1 +
 D2 +

 D3*
+ D

4

D1 +
 D2 +

 D3 +
 D4*

BA
TT

ER
Y

(%
)

TEST CASE

(b) Battery consumption

0

10

20

30

40

50

60

70

80

90

100

D1 o
nly

D2 o
nly

D3 o
nly

D4 o
nly

D1*
+ D

2

D1 +
 D2*

D3*
+ D

4

D3 +
 D4*

D1*
+ D

3 +
 D4

D1 +
 D3*

+ D
4

D1 +
 D3 +

 D4*

D1*
+ D

2 +
 D3 +

 D4

D1 +
 D2*

+ D
3 +

 D4

D1 +
 D2 +

 D3*
+ D

4

D1 +
 D2 +

 D3 +
 D4*

C
PU

 L
O

AD
 (%

)

TEST CASE

(c) CPU load

Fig. 3. Computation offloading experimental results. An asterisk next to
a device’s ID specifies that it was the master for that particular use case.
Computation time was calculated as the maximum time between the devices
in the mobile cloud (since the master always takes longer, because it has to
gather the partial video files back and merge them). The battery consumption
was calculated as the sum between the percentage of battery consumed on all
devices in the mobile cloud, whereas the load was computed as the average
of CPU loads for the collaborating nodes.

devices should a computation be scattered on, care must be
taken in analyzing its characteristics and striking a balance
between communication overhead and computation duration.
Furthermore, we have taken a simplified approach where the
master device first sends all the photos to be collated to all
the other devices, and then they each start their computations.
However, we plan to improve this by allowing the mobile
nodes to start collating photos even when not all of them
have been received, so we have a higher degree of parallelism.
In conclusion, the main takeaway from this section is that
grouping multiple devices into a mobile cloud has significant
benefits that encourage us to move further with the Drop
Computing framework.

PerCrowd'19 - 2nd International Workshop on Context-Awareness for Multi-Device Pervasive and Mobile Computing

302

TABLE VI
EXPERIMENTAL RESULTS OBTAINED WHEN RUNNING THE VIDEO

COLLAGE APP ON FOUR DEVICES. AN ASTERISK NEXT TO A DEVICE’S ID
SPECIFIES THAT IT WAS THE MASTER FOR THAT PARTICULAR USE CASE.

ID Load (%) Mcycles CPUs Mem (MB) Time (s) Bat (%)
*1 48.93 16068 0.21 168.99 42.27 0.04
2 56.6 34316 0.8 111.82 22.34 0.02
3 14.59 19495 0.24 73.83 38.19 0.01
4 16.1 18063 0.3 127.03 28.62 0.01

1 53.85 35151 0.82 107.11 22.45 0.03
*2 51.47 16625 0.24 168.45 39.63 0.04
3 15.05 19479 0.27 72.4 35.67 0.02
4 16.03 17969 0.33 99.64 26.08 0.01

1 48.54 19562 0.34 116.99 30.13 0.02
2 55.69 31968 1.03 141.8 17.17 0.03
*3 20.42 9918 0.16 90.95 33.62 0.02
4 17.91 18371 0.42 127.11 20.93 0.01

1 39.53 21197 0.41 109.54 26.68 0.02
2 57.46 34361 0.79 116.45 23.2 0.03
3 14.12 16961 0.26 74.28 31.65 0.01
*4 21.98 9953 0.16 126.79 34.81 0.02

VI. CONCLUSIONS AND FUTURE WORK

We presented a mobile cloud computing framework entitled
Drop Computing, where mobile devices attempt to offload
computations to neighboring nodes through close-range pro-
tocols. If this is not possible, nodes at the edge of the network
are employed, while the cloud acts as the third option. We
implemented the first layer of this framework on Android, and
we built an application on top of it to highlight its capabilities.
The app receives a set of photos and collates them into a
video with ffmpeg. Since collating the photos requires a lot of
computation resources, the process can be spread to nearby
devices through our Drop Computing framework.

We tested our application using four Android devices, and
showed that our framework can drastically decrease CPU
usage per device, which increases the overall QoE for Android
users. Furthermore, the total battery consumption is lowered,
since nodes have less computations to perform and the CPU
cores spend less time in higher frequencies. The overall com-
putation time is slightly increased by our implementation, but
this is something that we are working to improve in the future.
However, this also depends on the size of the computations and
the amount of data to be exchanged between devices, so care
must be taken when deciding whether to offload or not. We
plan on performing experiments while varying the dimension
of the tasks (i.e., the amount and size of the photos to be
collated), in order to find the point where the size of the task
makes the communication overhead irrelevant.

For this paper, we tested the first layer of the Drop Comput-
ing paradigm, namely the device-to-device opportunistic layer.
However, in the future we wish to also perform some ex-
periments where devices can either perform the computations
themselves, offload them to neighbor nodes, or send them to
the cloud. We would like to show that using device-to-device
collaboration still remains a viable option for intensive compu-
tations in certain situations, even when the cloud is available.
We also want to address the issue of security [19], [20], which
is currently a sensitive topic in MCC.

REFERENCES

[1] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis,
and G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative
computing,” Future Generation Computer Systems, 2017.

[2] R. K. Balan and J. Flinn, “Cyber foraging: Fifteen years later,” IEEE
Pervasive Computing, vol. 16, no. 3, pp. 24–30, 2017.

[3] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks,” IEEE communi-
cations Magazine, vol. 44, no. 11, 2006.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[5] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and Beyond, ser.
MCS ’10. New York, NY, USA: ACM, 2010, pp. 6:1–6:5.

[6] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proceedings of the Thirteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’12. New York, NY, USA: ACM, 2012, pp. 145–154.
[Online]. Available: http://doi.acm.org/10.1145/2248371.2248394

[7] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and
E. Zegura, “Cosmos: Computation offloading as a service for mobile
devices,” in Proceedings of the 15th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’14.
New York, NY, USA: ACM, 2014, pp. 287–296. [Online]. Available:
http://doi.acm.org/10.1145/2632951.2632958

[8] B. Zhou, A. V. Dastjerdi, R. Calheiros, S. Srirama, and R. Buyya,
“mcloud: A context-aware offloading framework for heterogeneous
mobile cloud,” IEEE Transactions on Services Computing, vol. PP,
no. 99, pp. 1–1, 2016.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[11] R.-I. Ciobanu and C. Dobre, “Mobile interactions and computation of-
floading in drop computing,” in Advances in Network-Based Information
Systems, L. Barolli, N. Kryvinska, T. Enokido, and M. Takizawa, Eds.
Cham: Springer International Publishing, 2019, pp. 361–373.

[12] R.-I. Ciobanu, R.-C. Marin, C. Dobre, V. Cristea, and C. X. Mavro-
moustakis, “Onside: Socially-aware and interest-based dissemination
in opportunistic networks,” in Network Operations and Management
Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–6.

[13] A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data
offloading: technical and business perspectives,” IEEE Wireless Com-
munications, vol. 20, no. 2, pp. 104–112, 2013.

[14] F. Rebecchi, M. D. De Amorim, V. Conan, A. Passarella, R. Bruno, and
M. Conti, “Data offloading techniques in cellular networks: A survey.”
IEEE Communications Surveys and Tutorials, vol. 17, no. 2, pp. 580–
603, 2015.

[15] J. F. Pérez, G. Casale, and S. Pacheco-Sanchez, “Estimating computa-
tional requirements in multi-threaded applications,” IEEE Transactions
on Software Engineering, vol. 41, no. 3, pp. 264–278, 2015.

[16] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “Flopcoin: A cryp-
tocurrency for computation offloading,” IEEE Transactions on Mobile
Computing, vol. 17, no. 5, pp. 1062–1075, May 2018.

[17] R.-C. Marin, “Hybrid contextual cloud in ubiquitous platforms com-
prising of smartphones,” International Journal of Intelligent Systems
Technologies and Applications, vol. 12, no. 1, pp. 4–17, 2013.

[18] D. Chatzopoulos, K. Sucipto, S. Kosta, and P. Hui, “Video compression
in the neighborhood: An opportunistic approach,” in 2016 IEEE Inter-
national Conference on Communications (ICC), May 2016, pp. 1–6.

[19] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J. Ott, “Security
and privacy in device-to-device (d2d) communication: A review,” IEEE
Communications Surveys Tutorials, vol. 19, no. 2, pp. 1054–1079, 2017.

[20] K. Sucipto, D. Chatzopoulos, S. Kosta, and P. Hui, “Keep your nice
friends close, but your rich friends closer - computation offloading using
nfc,” in INFOCOM 2017-IEEE Conference on Computer Communica-
tions, IEEE. IEEE, 2017, pp. 1–9.

PerCrowd'19 - 2nd International Workshop on Context-Awareness for Multi-Device Pervasive and Mobile Computing

303

