
Demo: Visualizing Adaptation Decisions in
Pervasive Communication Systems
Martin Pfannemüller∗, Janick Edinger∗, Markus Weckesser†, Roland Kluge†,

Manisha Luthra†, Robin Klose†, Christian Becker∗, Andy Schürr†
∗Universität Mannheim

Email: {martin.pfannemueller, janick.edinger, christian.becker}@uni-mannheim.de
†Technische Universität Darmstadt

Email: {markus.weckesser, roland.kluge, andy.schuerr}@es.tu-darmstadt.de,
manisha.luthra@kom.tu-darmstadt.de, robin.klose@seemoo.tu-darmstadt.de

Abstract—Pervasive systems enhance our environment with
various services under a wide range of contextual conditions.
Hence, as a user’s context may change over time, pervasive
systems shall be able to reconfigure themselves. While such
reconfigurations are typically difficult to conceive, a system de-
signer might be interested in their triggers and execution. To this
end, we demonstrate COALAVIZ, a tool for making adaptation
decisions in pervasive communication systems traceable. Our
demonstration shows the capabilities of COALAVIZ based on
the TASKLET system, a distributed computing system for task
offloading. The offloading mechanism can be reconfigured in
terms of the scheduling strategy. We show the use of COALAVIZ
and how the TASKLET system behaves in different contextual
situations and during reconfigurations based on changing goals.

I. INTRODUCTION

Pervasive (communication) systems need to operate in
multiple continuously changing environmental contexts. Such
systems provide a large number of configuration options to
reflect these changes. However, tracing the current system
status as well as the different system configurations is not
yet provided in a simple manner. Due to the large config-
uration space, a possibility for tracing the current system
state is required. Additionally, as of the context-dependency,
nonfunctional properties change over time as well. In current
work, we propose COALAVIZ, a traceability platform for self-
adaptive pervasive communication systems [1]. This paper
accompanies this work by demonstrating the capabilities of
COALAVIZ in the TASKLET distributed computing system.

This paper continues with a brief introduction of the capa-
bilities of COALAVIZ in Section II. Then, Section III presents
the TASKLET use case and a subset of its reconfiguration
options. Section IV presents the timeline of the demo. Finally,
Section V concludes this paper.

II. ACHIEVING TRACEABILITY USING COALAVIZ

COALAVIZ is a tool for making adaptation decisions in
self-adaptive pervasive communication systems traceable [1].
Figure 2 shows a screenshot of the COALAVIZ frontend, which
allows to (i) visualize the network state as graph-based view
(network view, A) (ii) visualize the system performance over
time (metric view, B), (iii) visualize the system configuration

Tasklet System

System Context

Random FuzzyRoundRobin

Low Complexity
Threshold

AlwaysBest

ProviderScheduling

int: 35..45

High Complexity
Threshold

Percentage Slow
Providers

Percentage Fast
Providers

int: 65..90 int: 50..60 int: 25..50

int: 0..250

#Providers #Consumers Average
Utilization

int: 0..250 int: 0..100
Value: 150 Value: 50 Value: 5

Mandatory

Alternative … System feature

… Context feature

…

Dom: l..u
System attributeLegend

Optional …

Dom: l..u
Context attribute

Fig. 1. TASKLET context feature model. Grey: current configuration.

(configuration view, C), and (iv) change weights of perfor-
mance goals interactively (goal management, D).

In the network view, different colors of nodes and edges
represent different device and connection types. The metric
view on the top right is a plot of nonfunctional metric
values over time. The context feature model (CFM) in the
configuration view represents the configuration space and the
current configuration of the target system (gray selection) [2].
Configuration options are shown in a tree structure, with cross-
tree constraints restricting the configuration space. A configu-
ration is a set of selected features that fulfills all constraints.
The CFM used in this demo is shown in Figure 1 which
specifies the configuration space of the TASKLET system.
Besides system features in the left-hand side tree branch and
context features in the right, features can have additional
attributes such as the context attributes for the number of
providers and consumers in the system. The context branch
is selected according to changes in the system’s environment
which then can trigger a reconfiguration of the system branch.
Finally, the goal management panel can be used to set the
weights for achieving nonfunctional goals such as matching
deadlines or achieving a high speed.

COALAVIZ provides a socket-based interface for sending
and receiving JSON messages to and from an actual system
or a simulator and its adaptation logic. Thus, as a technical
requirement, a system connected to COALAVIZ must send
conforming JSON messages. Each view supports different
event messages. The backend of COALAVIZ decouples the

Demonstration on Pervasive Computing and Communications 2019

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 335

A B

C

D
Fig. 2. Screenshot of COALAVIZ running TASKLET use case. Red: Broker; Light Green: Consumer; Dark Green: Provider

messages from the actual view implementations. The network
view supports adding and removing nodes and edges as well
as modifying the visualization of the node and edge properties
(e.g., color, line stroke). The metric view can receive events
with a metric type, a metric value, and a timestamp. Further,
the CFM view gets the current context of the system and
its configuration as events. Finally, the goal management
view gets the possible performance goals and sends back the
weights for each goal when changed.

In our prototype, we use the approach from previous work
for planning the adaptation decisions [3]. There, we learn
the performance influence of configurations on nonfunctional
metrics. Each nonfunctional metric can be weighted by the
user. Thus, changing the weights of the performance goals
changes the reconfiguration behavior. Taking all views together
allows to trace the behavior of the connected system and to
change performance goal weights at runtime. This facilitates
traceability in self-adaptive pervasive communication systems.

COALAVIZ is implemented as a Java-based web applica-
tion using Vaadin and the JavaScript libraries vis.js (for the
network view) and Chart.js (for the metric view)1. The CFM
visualization is a custom implementation.

III. USE CASE: TASKLETS

We demonstrate COALAVIZ using the TASKLET [4] system,
a distributed system for computation offloading.
Concepts: The TASKLET system provides an abstraction for
computation and allows to seamlessly exchange computational
workload among multiple heterogeneous devices. A device
may use different resources to offload Tasklets: (i) remote
resources, (ii) closed units of computation, or (iii) any device
with available computational capacity. The system consists
of three types of entities: (i) a (resource) provider runs the
TASKLET execution environment and offers its computation

1https://vaadin.com/, http://visjs.org/, https://www.chartjs.org/

resources to other devices; (ii) a (resource) consumer runs
applications that create and sends Tasklets to providers for
execution; (iii) a (resource) broker coordinates required and
provided resources of registered consumes and providers by
assigning Tasklets to providers.

Fig. 3. Tasklet Overlay Network

A provider initially registers at one resource broker and
publishes its capabilities (e.g., processing speed). Therefore,
a broker has a global view of all registered providers. When
a consumer sends a resource request (i.e., a Tasklet to be
executed) to a broker, the broker selects a suitable provider for
execution (scheduling). The TASKLET system currently does
not support queuing. Thus, only idle providers get selected.
Figure 3 shows the topology of a TASKLET overlay network.
Complexity-Aware Scheduling: In this demo, we consider
a real-time offloading application that relies on TASKLET.
The offloaded Tasklets have different complexities and need
to be executed before a given deadline that is similar for
all Tasklets (e.g., due to response time requirements). Thus,
computationally intensive Tasklets are prone to missing the
deadline, especially if it is scheduled to a slow provider.
As a solution, the brokers can always select the fastest

Demonstration on Pervasive Computing and Communications 2019

336

available provider for execution. While this approach works
well in underutilized environments with sufficiently many
fast providers, it reaches its limits when the resource uti-
lization increases. Eventually, slow provider inevitably get
selected for executing computationally intensive Tasklets. As
a countermeasure, brokers may reserve powerful providers for
complex Tasklets and schedule less complex Tasklets to slow
providers. This scheduling strategy leaves powerful resource
providers unused if no pending complex Tasklets exist. To
this end, the scheduling decision boils down to a trade-off
between meeting deadlines and optimizing the performance of
the overall system. To deal with the trade-off, the TASKLET
system allows to switch strategies at runtime between the
following four scheduling strategies.

Using AlwaysBest scheduling, the broker always selects the
fastest available provider, independent of the Tasklet com-
plexity. This ensures that powerful providers have the least
idle times possible and the overall performance of the system
is maximized. Slow providers are only selected if all fast
providers are already in use.

Using Fuzzy scheduling, the broker takes the complexity of
Tasklets into account and distinguishes between low, medium
and high complexity. Similarly, providers are grouped into
slow, medium and fast providers. During scheduling, low
(medium/high) complexity Tasklets get allocated only to slow
(medium/fast) providers. Within a group, the broker always
selects the fastest available provider.

Using Random scheduling, the broker randomly selects an
available provider. Using Round Robin scheduling, the broker
selects providers in a round robin manner.
Strategy Selection: To ensure that the deadlines of all Tasklets
are fulfilled, the broker needs to decide when to switch the
strategy. The proportions of slow, medium, and fast providers,
as well as the number and complexity distribution of the
Tasklets influences this decision. In an underutilized system
with many providers and few Tasklets, the AlwaysBest strategy
might perform best and fulfill all deadlines. When using the
Fuzzy strategy, the broker also needs to set the lower and
upper bounds for assigning each Tasklet and provider to one of
the three categories. Accurate settings can improve the overall
system performance while avoiding missing deadline.

Figure 1 shows all configuration options (incl. the monitored
context attributes) and the current configuration highlighted in
gray. The attribute values on the right indicate a low utilization
of the system because the ratio of the number of providers and
consumers is high (15050). Therefore, AlwaysBest scheduling is
selected here.

IV. DEMONSTRATION DETAILS

In this demonstration, we execute the TASKLET system in
the OMNET++ simulator [5]. For determining reconfiguration
decisions, we use COALA [3]. A timeline of the demo is shown
in Figure 4. The figure shows how the TASKLET system adapts
based on changed goal weights. As different configurations
have different influence on the matched deadlines and the
overall speed of the TASKLET execution, changing the weights

0 20 40 60 80 100 120 Time [s]

System start:
150 providers
50 consumers

100 additional
consumers

started over time

150 consumers, System
starts to miss deadlines

The system manages to
meet the deadlines

System goal is set to
0.1/0.9 (Deadlines/Speed)

System goal is set to
0.6/0.4 (Deadlines/Speed)

System reconfiguration

System manages to meet
the deadlines again

Fig. 4. Timeline of the demonstration

influences the reconfiguration behavior. Figure 1 shows the
context and system configuration at the beginning of the
demonstration. Additionally, the user weights the nonfunc-
tional goals deadlines and speed by 10% and 90%. Thus,
the broker uses the AlwaysBest strategy and always selects
the fastest providers available. This results in a high average
performance of the Tasklet executions and the providers can
meet all deadlines. Over time, 100 additional consumers join
the network using Poisson-based inter-arrival time. Therefore,
after 40 s, 150 consumers causing a significant additional load
for the 150 providers. At some point, all fast providers are busy
and the broker has to select slow providers for execution. For
complex Tasklets, the increased utilization results in deadline
misses after ca. 60 s. The system operator changes the weights
of the performance goals to prioritize meeting the deadlines
over optimizing the execution speed by setting them to 60%
and 40%. Based on the changed weights, COALA decides to
change the scheduling strategy from AlwaysBest to Fuzzy. As
a result, the system manages to meet the deadlines again with
almost no deadline misses after around 90 s. A video of the
demonstration is available at: https://vimeo.com/302803426.

V. CONCLUSION

In this demonstration, we show how COALAVIZ allows to
inspect the behavior of a pervasive communication system us-
ing an implementation of the TASKLET distributed computing
system in OMNET++ as example. Still, due to the JSON-
based socket interface, COALAVIZ can be used in conjunction
with various simulators and real systems, and its modular
design allows to exchange view components easily.

ACKNOWLEDGMENT
This work has been funded by the German Research Foundation (DFG)

as part of projects A1, A4, C1, and C2 of the Collaborative Research Center
(CRC) 1053–MAKI.

REFERENCES

[1] M. Pfannemüller, M. Weckesser, R. Kluge, J. Edinger, M. Luthra,
R. Klose, C. Becker, and A. Schürr, “CoalaViz: Supporting Traceability of
Adaptation Decisions in Pervasive Communication Systems,” in PerCom
Workshops ’19, 2019, accepted.

[2] K. Saller, M. Lochau, and I. Reimund, “Context-aware DSPLs: model-
based runtime adaptation for resource-constrained systems,” in SPLC
Workshops ’13, 2013.

[3] M. Weckesser, R. Kluge, M. Pfannemüller, M. Matthé, A. Schürr, and
C. Becker, “Optimal Reconfiguration of Dynamic Software Product Lines
Based on Performance-Influence Models,” in SPLC ’18, 2018.

[4] D. Schafer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker,
“Tasklets: better than best-effort computing,” in ICCCN ’16, 2016.

[5] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in SimuTools ’08, 2008.

Demonstration on Pervasive Computing and Communications 2019

337

