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Abstract—Workplace occupancy detection is becoming increas-
ingly important in large Activity Based Work (ABW) environ-
ments as it helps building and office management understand the
utilisation and potential benefits of shared workplace. However,
existing sensor-based technologies detect workstation occupancy
in indoor spaces require extensive installation of hardware
and maintenance incurring ongoing costs. Moreover, accuracy
can depend on the specific seating styles of workers since the
sensors are usually placed under the table or overhead. In
this research, we provide a robust system called OccuSpace
to predict occupancy of different atomic zones in large ABW
environments. Unlike fixed sensors, OccuSpace uses statistical
features engineered from Received Signal Strength Indicator
(RSSI) of Bluetooth card beacons carried by workers while they
are within the ABW environment. These features are used to
train state-of-the-art machine learning algorithms for prediction
task. We setup the experiment by deploying our system in a real-
world open office environment. The experimental results show
that OccuSpace is able to achieve a high accuracy for workplace
occupancy prediction.

Index Terms—Occupancy prediction, activity-based workplace.

I. INTRODUCTION

In an ABW, workers share desks and are encouraged to
choose their seat anywhere from the available workstations.
Over the past decade, the corporate world has seen an upward
trend in ABW adoption [1], and several reasons have been at-
tributed to this shift, including space and cost saving strategies
to accommodate their workers. Also, the shared workplace has
shown to bring greater brenifits including worker satisfaction
[2], [3] and work flexibility [4]. Recent study highlights that
the workers in shared workplace can exchange knowledge
more effectively [5], [6] which can enrich their skills and
enables them to be more productive [2]. However, it is very im-
portant to understand the utilisation of this shared workplace as
it provides valuable insight for managers in strategic planning
or accommodating the need for new spaces. One approach to
achieve this goal is to predict occupancy of different atomic
zones within a workplace [7].

The proliferation of smart building technologies has made it
possible to sense, collect and analyse data related to buildings
and its occupants. In occupancy analysis context, there are

* This paper is part of an ongoing research project supported by Arup and
by use of the Nectar Research Cloud.

many types of sensors that can be installed under the desk
or overhead to identify the desk level occupancy in the
activity based work place. However, these technologies can
be expensive and require extensive hardware installation. Also
their maintenance can incur high levels of ongoing cost for
the management. Further, the performance of these sensor
based technologies are susceptible to noise and the occupancy
detection accuracy relies too heavily on the workers’ specific
seating and movement behaviours. As a result, it is challenging
to capture such behavioral data from the workers and provide
occupancy prediction accordingly. In this paper, we collect
relevant and valuable occupancy signals from a large ABW
space by deploying a Bluetooth Low Energy (BLE) sensor
network. Given a feature vector computed from the occupancy
signals, we predict which atomic zone in the ABW space is
occupied. We develop a system that utilises state-of-the-art
machine learning techniques to learn and predict occupancy
in different zones of the office space. The contributions of
this paper are as follows:

• Deployment of a BLE sensor network to collect and
process occupancy signals from different atomic zones
in ABW environment.

• A robust system for noise-resistant indoor occupancy
prediction through machine learning based modelling.

The paper is organized as follows. A summary of related
works is given in Section 2. The prediction problem is defined
in Section 3. We present our OccuSpace system for occupancy
prediction in Section 4. The discussion of experiments and
prediction results is given in Section 5. Finally, the paper
concludes with a direction of future research in Section 6.

II. RELATED WORK

Prior researchers have explored the directions of occupancy
pattern mining and prediction in work environments. A re-
view of occupancy detection systems for building settings is
presented in [8]. Additionally, researchers highlight the per-
formance evaluation of chair sensors for occupancy detection
in office building. In [9], an analytics approach to recognise
the patterns of occupant presence is presented. The approach
is based on cluster analysis that learns the rules of occupancy
patterns by decision tree induction. The induced rules from
decision tree are then used for occupancy schedule prediction.
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Fig. 1: OccuSpace System Overview.

Many sensor based techniques have also been proposed to
understand the space utilisation in office space. In [10], the
authors use CO2 sensors to estimate the occupancy of indoor
spaces. Another data-driven model based on decision tree and
hidden Markov model (HMM) to predict occupancy using
indoor environmental data is proposed in [11]. The need and
design requirements of algorithms for occupancy prediction
are first introduced in [12] and an extended version highlight-
ing occupancy prediction in presence of multiple resolution is
proposed in [13]. However, these devised techniques predict
the overall occupancy of a relatively large indoor space and
do not focus greatly on detailed movements of individuals
in different atomic zones. To do this, further deployment
of sensors is required. However, these sensor require costly
installation and maintenance. Also, their occupancy prediction
accuracy is highly dependant on specific seating styles of the
occupants. Bluetooth sensors have become popular in recent
times as they are cheap and able to collect data signals
passively from indoor occupants [14]. However, traditional
triangulation or trilateration techniques cannot be applied
to Received Signal Strength Indicator (RSSI) data captured
from BLE card beacons due to the omnidirectional nature of
the signal coverage area. Instead, a grid-based fingerprinting
technique can be used to calculate probable grid cell location
of a device [15]. However, grid fingerprinting is usually
conducted in controlled environments with equal grid sizes
and presence of fewer people to avoid signal attenuation.
Hence, this technique cannot be applied directly in large shared
office environment. Other measures such as counting the total
number of active MAC and IP addresses in the network [16]
is not a reliable indicator of occupancy i.e. people may leave
computers at their desks and usually use more than one device
connected to the Wi-Fi access points.

Therefore, a system - OccuSpace is developed that can
model noisy occupancy signals generated from workers’
movement. More specifically, this paper uses Bluetooth RSSIs
of moving BLE card beacons to train and compare machine
learning techniques to predict occupancy in atomic ABW work
zones of different sizes.

III. PROBLEM DEFINITION

Let Z = {z1, z2, z3, ..., zn} be the set of atomic zone
labels that are created by dividing an activity based workplace
into n small blocks of different sizes. A zone is considered
occupied when a worker carrying a Bluetooth beacon enters
the zone and remains there for a period of time τ . If F rssi is
a feature vector computed from the Bluetooth beacon signal
strength indicator over time τ , we predict the occupied zone
that corresponds to F rssi. The goal is to induce a classifier
F rssi → Z based on the training samples described by the
feature vector and the corresponding zone labels. We develop
a system called OccuSpace to predict the occupied zone for a
given feature vector.

IV. THE SYSTEM OVERVIEW

The OccuSpace systems consists of three modules: i) data
collection network, ii) data fusion and feature computation, iii)
occupancy prediction engine. An overview of the OccuSpace
system is illustrated in Figure 1 and the details of three
OccuSpace modules are described below.

A. Data Collection Network

This network collects data using two devices: Bluetooth
gateways and Bluetooth Low Energy (BLE) card beacons from
Kontakt.io as shown in Figures 2 (a) and (b). We deploy 4
Bluetooth gateways (G1, G2, G3, G4,) at four different loca-
tions as shown in Figure 2 (c). The participant workers perform
two tasks. First, the workers carry the assigned card beacons
all the time while they are within the work environment. This
allows the gateways to sense worker movements by capturing
the variations in Received Signal Strength Indicator (RSSI).
Second, the workers annotate their timestamped occupancy
while they occupy a work station in one out of 28 atomic
zones as shown in Figure 2 (c). The annotation is a zone
label zi indicates that the ith atomic zone is occupied during
any given time window. These annotations are used as ground
truth for the occupancy prediction for different atomic zones.
A brief description of BLE card beacons and gateways are
given below:
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Fig. 2: (a) Kontakt.io Gateway (b) Kontakt.io BLE Card Beacon (c) Zoning by Dividing the Floor Plan of Our Deployment
Site and Locations of 4 Gateways for Occupancy Prediction.

– BLE card beacons are transmitters that use Bluetooth
Low Energy technology to transmit their unique identifier
code to nearby receivers, in this case gateways. The
transmitted unique beacon identifier (i.e. tracking id) can
be used to detect the presence and movement of a person
carrying a specific beacon. The BLE technology reduces
power consumption thereby increasing beacon life span.

– A gateway device passively scans for BLE card beacons
in its surrounding range. Upon detection of beacons,
the gateway continuously collects beacon data including
their unique identifiers, scan start and end timestamps,
and RSSIs. The gateway uses RSSI to determine the
proximity of the beacons in relation to the gateway.
Note that the gateway(s) cannot use triangulation or
trilateration techniques to localize beacons. Gateways
send the collected beacon data to the cloud storage server
approximately every 1.5 seconds.

B. Data Fusion, Feature Computation and Mapping

In this stage, raw RSSI data from four gateways are ag-
gregated based on the tracking ID of BLE card beacons. It
should be noted that the collected RSSI data is continuous
and spanned over a predefined time period. A short time period
(τ ) is selected to proportionally segment the continuous RSSI
readings into fixed windows. Subsequently, statistical features
including maximum, minimum, mean, 1st quartile, median,
3rd quartile and variance are extracted from the RSSI data
points in the temporal domain (bounded by τ ). Simultaneously,
the timestamps of occupancy labels collected from the workers
are also segmented based on τ . Ultimately, the features and
the timestamped occupancy labels of the workers are mapped
to construct occupancy dataset with labelled RSSI features for
occupancy prediction.

C. Occupancy Prediction Engine

This module takes the occupancy labelled RSSI features
dataset for occupancy prediction. We train a set of classifiers
including J48, Decision Table (DT), k-Nearest Neighbor (k-
NN), Support Vector Machine (SVM), Random Forest (RF),
PART rules and Multi-layer Perceptron (MLP). The perfor-
mance of each classifier is evaluated using the test dataset.
We randomly divide the dataset into two parts: 60% for
training the classifiers and 40% for testing the classifiers.
The performance metrics used in the OccuSpace system is
the predictive accuracy which measures the ratio of correctly
predicted instances to the total number of instances evaluated.
This measure can be used to find the top predictive model.

V. EXPERIMENTS AND RESULTS

We deploy OccuSpace in a large commercial building in
Melbourne, Australia. We divide our deployment location
into 28 atomic zones of interests. The zone boundaries are
defined based on the seating arrangements of different teams
during the study period. We have 4 participant workers who
are assigned with individual Bluetooth card beacons. We set
τ = 15 and 30 seconds respectively for our experiment to
examine if there are any variations in prediction performance
for different occupancy time periods. We extracted 1820 and
1428 instances for τ = 15 and 30 respectively. We found
that the maximum predictive accuracy is produced by Random
Forest (RF) which is just over 56% and 40% for τ = 15 and
30 respectively.

We identified that this under performance is due to the
fact that our dataset is unbalanced for different zone labels.
By oversampling those instances and running the same ex-
periment, we examine that the accuracies produce by some
classifiers exceed 90%. This indicates that a good number of
data samples are sufficient to predict the occupancy of atomic
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Fig. 3: Prediction Accuracy by Different Classifiers for τ = 15
seconds (OS = Over Sampling, NS = No Sampling).

Fig. 4: Prediction Accuracy by Different Classifiers for τ = 30
seconds (OS = Over Sampling, NS = No Sampling).

zones in an activity based office environment using machine
learning techniques. Figures 3 and 4 show the accuracies of
different classifiers using data over sampling (OS) and no
sampling (NS) for τ = 15 and 30 respectively. The systematic
internal evaluation of classifiers is performed by averaging
evaluation scores over r iterations, where we use r = 1000
as the parameter of the OccuSpace system.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a system for predicting occupancy in
different atomic zones of different sizes in a real-world Ac-
tivity Based Work (ABW) environment. A Bluetooth network
was deployed to collect and process the occupancy signals
from the occupant workers. A number of statistical features
were computed from Bluetooth Received Signal Strength
Indicator data which were used to train a suite of classifiers
to predict the occupancy. We showed that a higher occupancy
prediction accuracy can be achieved by using machine learning
algorithms even within small time windows and with the
presence of many workers in the environment. We also over-
sampled the captured data to ensure balance across instances
with different zone labels. The experiments showed that we
can achieve more than 88.5% and 90% occupancy prediction
accuracies for τ = 15 and 30 seconds respectively when over
sampling was applied. We observed RSSI signal drop for small

period of time which may influence the computed features and
thus cause prediction errors. By deploying more beacons can
provide more granular data points. In future these issues can
be addressed to increase the accuracy.

Currently we are devising techniques to compute zone-
level occupancy numbers. Future work also includes spatio-
temporal behavioral analysis of occupants in different ABW
atomic zones. We also plan to investigate the occupancy
patterns by integrating associated factors including lighting,
noise, air quality and self-assessed productivity.
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