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Abstract—The correct technique is one of the main aspects
for semi-professional athletes training their volleyball skills.
Traditional training and movement assessment though, might
not yield the best result to improve the capabilities of a player.
Hereby problems or sub-optimal executions of a movement from
a technical point of view are often not easily detectable by a coach
or without technical support. We investigate the usage of an IMU
(inertial measurement unit) combined with an EMG sensor in
form of a ‘Myo’ Sensor unit [16], to classify the setting action of a
volleyball player to afterwards judge the technical qualities of the
movement and suggest improvements like a digital coach. We look
into the framework to gather a suitable ground truth and detect
the sequence of the actual setting in the datasets. This is then
used in combination with a machine learning model to classify
the movement. Results show that a subjective direct description
of the inaccuracies of the movement as a ground truth is sufficient
for this approach. An additional scored function is designed to
classify allowed setting actions by the international Volleyball
rules [6]. The sequence selection shows optimal results for 54.4%
of the samples, 26.6% of the selected sequences show minor
displacements. The classification of the setting action shows best
results for labels with 2, 3 and 4 classes with an F1-score of 0.74,
0.64 and 0.35, respectively. The classification results are overall
reasonable and are especially interesting for the scored function,
giving feedback for beginner players. Using the classification
model, feedback for the player is created directly through the
ground truth labeling.

Index Terms—Sensor Systems, Data Analytics, Recurrent Neu-
ral Network, Machine Learning, Sport Activity Recognition

I. INTRODUCTION

The correct technique is one of the main aspects for semi-
professional athletes training and improving their volleyball
skills. Traditional training and movement assessment though,
might not yield the best result to improve the capabilities
of a player. Hereby problems or the sub-optimal execution
of a movement from a technical point of view is often not
easily detectable by a coach or without technical support, e.g.,
through camera tracking of the movement. A sensor which
is monitoring more than just the visual aspects of a video,
but instead the actual movements of the arm and muscles
can give more valuable insight into the actions during the
interaction of the player with the ball. Through this, direct and
very detailed feedback can be given, as well as suggestions
for improvements. The setting action of a ball, relates to
the volleyball specific action of passing the ball over the
head without catching it. As the setting of the ball is a very

important action of a volleyball match, it is interesting for all
levels of volleyball skills as a support for the player as well
as for the coach in a training setup. In competitive volleyball
games, incorrect technique while setting a ball, will result in
a point for the opposing team, according to the international
volleyball rules [6]. Additionally, the setting action is the base
for most forms of attack during a game, and therefore very
strong technique capabilities are indispensable. Sensors used
for this task are combined in one appliance which is fastened
with an armband in an unobtrusive way just below the elbow.

In previous research, many applications have been devel-
oped to support volleyball sport through sensors and other
analytical support. For most of these applications, the jumping
activity has been in focus [8], [10], [17]. The ‘Altathlon’
system is discussing an application to give feedback on the
arm movements while the player is passing or setting the ball
[1], [2], [3] and therefore considered closest to this suggested
application. Due to the invasive nature of the ’Althatlon’
sensor and without gathering EMG data, this paper is going
beyond this approach and creates room for different insights.
The overall conclusion of the previous research is that IMU
sensors are very commonly used in volleyball activity recog-
nition or tracking. In these cases the usage is often focused
on analyzing the foot and leg movement. The same sensor
has also been used for arm applications even though the
combination of tracking the arm, hand and wrist movement
in an unobtrusive way, to give insight about the technique of
the setting action, is not available. This would be especially
useful, to analyze a mostly undisturbed movement through an
unobtrusive application using a comparatively cheap sensor
which is affordable even for small sports clubs, delivering
detailed information of the hand and arm.

In this paper, we cover the question, whether it is possible
to identify the hand and arm movements in detail so that
the reason for technical inaccuracies can be identified and
explained to the player. This overall goal is broken down into
three main questions. Firstly, how can the setting movement
be divided into classes in a consistent and usable way, so that
a ground truth congruous to volleyball technique standards
and rules, can be gathered. Secondly, can the setting action be
identified in the recorded data, so that the relevant sequences
can be selected. Thirdly, can the technique of the setting action
be classified, so that the player can get usable feedback.
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Using a ‘Myo’ sensor armband by Thalmiclabs [16], mul-
tiple setting actions of 35 persons were gathered and prepro-
cessed. Additionally, those actions were videotaped to compile
the ground truth labels. The video data for each dataset was
analyzed to see in detail which part of the arm, wrists, hand
and fingers are moving in which way during the setting action.
The ground truth should represent this in a way, that the player
can get feedback on how s/he can improve his/her setting
actions quality wise, to increase performance. In order to
achieve this, the movement was labeled subjectively in relation
to the ‘correct’ performance for a setting action as one would
explain to a player, as a coach. This is therefore especially
interesting, e.g., for semi-professional players to perfectly
orchestrate the team. The ground truth should also represent
problems in the movements, which result in a direct point for
the opposing team. For this purpose, a scoring method was
designed, summarizing the subjective labels into ‘allowed’ and
‘not allowed’ actions. The scoring function is most relevant
for beginners, who do not know how to correctly set a ball,
according to volleyball rules.

To detect the areas of interest as subsets of the time
sequences, these datasets are being analyzed for their char-
acteristics. Therefore, a set of base rules were defined, which
decide on the areas characterizing the setting action in the
datasets, based on the flow of the curves. After manually
defining these sets of rules, a sliding window approach in
combination with the basic variance per window is used
to statistically identify the described windows. The selected
sequences in combination with the labels are used to classify
the setting action. As most volleyball related applications are
different to this project, suitable algorithms were compared
to the human movement classification which use multimodal
time sensitive data. A deep convolutional neural and LSTM re-
current network [12] capable of multimodal wearable activity
recognition is being used in our approach. The classification
of the setting movement can then directly be used to explain
to the user how s/he can improve his/her setting skills.

The subjective as well as the scoring labels could cover the
basic movements which are interesting for the setting action.
Compiling the labels for the samples showed that through
limitations of the video data as well as the hazard of subjective
decisions the consistent labeling is a challenge. In regard to the
sequence selection, a sliding window approach in combination
with the variance metric is used. Results show that the correct
area can be detected, according to the previously defined
rules, and it is therefore possible to navigate through the
samples time wise. Of the analyzed samples 54.4% of the
selected windows were perfectly aligned with the defined
rules, 26.6% showed slight differences. The machine learning
model is evaluated using the F1 measure and is computed
for the separate labels, for each EMG data and acceleration,
gyroscope and orientation (AGO) data, due to the different
sampling rates. The classification result shows that for labels
containing 2, 3 and 4 classes, F1-scores of 0.74, 0.64 and
0.35 can be achieved, respectively. Acc, gyr and or data
show best results for the labels. Using these results to make

recommendations to the player is directly possible due to
the setup of the classes. Overall best results are achieved
by the scoring labels. In future, the model could be used
in combination with a user interface used by beginners as
well as semi-professional players to train their skills using
the ‘Myo’ Sensor and the developed model. This paper shows
a viable approach to prepare the data sequences, compute
descriptions of the movement in form of ground truth labels
and compute the classes using a machine learning model. Even
though there is room for improvement on the accuracy of the
model results, the capabilities for the preparation of the data
is widely discussed and gives a solid starting point to extend
and improve the model.

In the following, volleyball related background is provided
to understand how a setting action is theoretically executed
in section II-A. After this, in section II, approaches in lit-
erature for similar problems are discussed. This is followed
by an explanation of the data collection setup as well as an
explanation of the ground truth design in section III. The
methodology and model design are subsequently discussed
for the sequence selection in section IV, as well as for the
movement classification in section V. The results for both are
then discussed in terms of accuracy in section VI, followed
by the conclusion and further research.

II. BACKGROUND AND RELATED WORK

A. Setting Technique in Volleyball

The setting movement, which is also called overhand pass,
is a very important volleyball technique for all players and
is used as the standard way to pass the ball between the
players. Especially for the position of the setter, the player
needs to master the setting technique perfectly to be able to
orchestrate the offense of the team. The setter therefore needs
to pass the ball to the attacking players very precisely and with
the correct timing. The official rulebook dictates the base on
which the setting action is defined [6]. These rules are, among
others, that “The ball must not be caught and/or thrown”
and it is forbidden to “contact various parts of his/her body
in succession” with the ball [6]. These rules have multiple
consequences for the actual playing of the ball. The restraint to
not catch the ball while playing implicates therefore, e.g., that
the contact to the ball needs to be very swift and delicate. This
means the movement of the hands and wrists is very central.
Therefore, the official rules are translated to the players to
guide them, e.g. “Push the ball outwards using your wrist,”
to ensure the correct movement. These rules aim on the one
hand to help the player to play the ball correctly in relation to
the official rules, but on the other hand to guide the player to
play in a way that they get full control over the ball in order
to pass it to an attacking player precisely. To perform a setting
action therefore, the technique is very important.

B. Analytics in Volleyball

Volleyball is already supported through many digital tech-
nologies, starting with basic video material capture and manual
analysis or aided by software [18], [15]. The analysis of the
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visual data might not lead to optimal suggestions though, as
the problems in the performance depicted through the detailed
views and angles are not necessarily identifiable. Also more
sophisticated approaches exist, using sensor data.

Kautz et al. [11] concentrated on collecting information on
arm movements through a single point sensor. The suggested
method is to use inertial sensor data through a wrist band,
which is not perceived as intrusive, as the study states. The
collected data is then used to identify player actions during the
game or practice. Another similar approach was introduced by
Cuspinera [5]. In this approach, the player wears a glove which
is fitted with a gyroscope sensor. This is then used to identify
the serving technique of the player. This application comes
closest to the suggested usage for technique improvement
feedback for the setting action. A similar armband is used to
track arm and shoulder movement by Rawashdeh [14] which
is fitted with an IMU unit. The data captured is then used
to identify the action of serving a ball. The studies show
that the use of the IMU unit has been successful in the past
to analyze volleyball movements, also for technique analysis
applications. As the capture of the hand data with the IMU
unit is difficult, in this study, we add the EMG sensor to this
setup. Lastly, the ‘Altathlon’ system is tackling similar areas
of giving feedback on the arm movements while the player is
passing or setting the ball [1], [2], [3]. Hereby a rather intrusive
sensor combination including a glove, flexion sensors as well
as electric contacts covering the elbow, forearm, wrist and
hand is being used. This gives more insight into the passing
and setting technique of the athlete and creates the possibility
of giving recommendations. The aim hereof is similar to
the application suggested by this paper, though the expected
advantages will be improved practicability and lower costs.

C. Multimodal Multivariate Time Series Activity Classification

To classify the setting action, a multimodal time series
activity classification for multivariate classes needs to be
designed. As a similar setup, Human Activity Recognition
(HAR) algorithms are examined to identify a suitable algo-
rithm for this problem. With a wide area of applications, also
in the area of HAR, simple models like the SVM or Random
Forest model are being used [7], [13]. Due to the importance of
the relationships and the very time sensitive data, we decided
to design a machine learning algorithm. As a similar approach,
the results of Ordonez et. al. [12] were taken into account,
where a deep convolutional and LSTM recurrent neural net-
work system for multimodal wearable activity recognition
is discussed. This system, which is suitable for multimodal
wearable sensors, can perform sensor fusion naturally and
does not require expert knowledge in designing features and
explicitly models the temporal dynamics of feature activations.
This falls in line with the setup of this paper, therefore this
approach has been taken as a model for our classification.

III. ACTIVITY RECORDING

The data is collected using a ‘Myo’ gesture control arm-
band, developed by Thalmiclabs [16], which is incorporating

‘Medical Grade Stainless Steel EMG sensors, highly sensitive
nine-axis IMU’ [16], with a sampling rate of 200Hz in the unit
‘activation’. The EMG data shows the muscle activation per
electrode. This means there is no direct mapping between the
muscles and each node [16]. The ‘Myo’ also collects accelera-
tion (acc) data in the unit ‘gravitational force,’ gyroscope (gyr)
data in the unit ‘radians’ and orientation (or) data represented
by ‘quaternions’ with a sampling rate of 50Hz each. All data
is collected with a laptop through a Bluetooth interface. The
ball that was used is a regular FIVB training volleyball Mikasa
MVA330 [4]. The data of 35 persons (22 m, 13 f) between
16 and 51 years old was collected, while they were passing a
regular FIVB training volleyball [4] about 5-10 times each. Of
the 35 subjects, 19 were beginners with little to no volleyball
experience and 16 were competitive players in various upper
skill levels. The distance played per set is roughly 2m each.
The setting action was additionally recorded using two video
cameras focusing on the hand movements in order to enable
the model building process. The recordings are on average 5s
in length. This data was then used to identify and translate the
data points of the various sensors into practical movements.

A. Ground Truth Model

As described in the first research question, we needed to
define a framework in which a setting movement could be
classified in a consistent and usable way, so that a ground truth
congruous to volleyball technique standards and rules, could
be gathered. This is necessary to train the machine learning
model and classify the movement of the player in later stages.

1) Subjective Approach: There are several basic problems
typical for sport analytics, in designing feasible ground truth
labels. Especially for volleyball technique the distinction be-
tween targeted movement executions is very small, which
makes it difficult to describe the movement in detail in an
objective way to classify it. As an alternative, the movement
executions are described in whole, directly related to possible
problems by the following labels:

1) Arm Movement: Too low, too far in front, correct, too
far back

2) Hand Movement: played with palm, played partly with
fingertips, played with fingertips

3) Wrist Movement: smooth, medium, inflexible
4) Timing: correct, incorrect
5) Standing while playing: yes, no

Using this setup, the classes are directly related to the prob-
lems and yield direct feedback for the player.

2) Scoring Method: As a second option, we wanted to
classify whether a setting action can be considered ‘allowed’
or ‘not allowed’ using a scoring function. In competitive
volleyball games, incorrect technique while setting a ball, will
result in a point for the opposing team, according to the
international volleyball rules [6], so the player will get this
feedback through the system. We used the already available
information of the subjective labels and scored their outcome.
Here the aim was to have a less fragmented movement
description but a full movement assessment which identifies
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Fig. 1. Score structure, green ’allowed’, red ’not allowed’

unaccepted movements of the player. Therefore, the subjective
labels ‘arm movement,’ ‘hand’ and ‘wrist movement’ as well
as the label describing whether the player is ‘standing while
playing’ are being broken down further into an ‘allowed’ and
a ‘not allowed’ action as can be seen in Fig. 1. This means
the all arm movement classes but ‘correct’ result in a ‘not
allowed’ class. For the hand movement, played with palm
results in a ‘not allowed’ class, all others in ‘allowed’. The
wrist movement is scored accordingly. The other introduced
labels aim on the quality, not the correctness of the setting
action and are not included in the scoring function. If all
three areas result in ‘allowed’, the setting action is considered
‘allowed’ as no rule breaking mistakes were made. In the
results section, the summarized separate classes are used as
shown in Fig. 1. The results of the three separate labels can
be summed up to determine the overall ‘allowed’ class as a
second step.

IV. SEQUENCE SELECTION

A. Methodology

To support the classification algorithm, it is necessary to
get an understanding on which areas show the actual setting
action. This is important as the datasets also contain additional
arm movements from before and after the setting action.
Comparing the datasets and crosschecking them with the video
tape time line, it is clear that the main area of interest is located
where the strongest deviation occurs, as can be seen in Fig. 2.
The challenge hereby is, that there is not necessarily only one
time window with strong peaks but multiple per sample, of
which only one depicts the actual setting action. Additionally,
the border locations of the window are not clearly definable
as the areas vary to some extent over the different datasets.

1) Data Preprocessing: The datasets provided by the ‘Myo’
sensor are preprocessed to be used in the next computational
steps. This processing includes the adjustment of all axes to
the same length if individual package losses occurred and the
exclusion of defect datasets after, e.g., losing connection to
the sensor.

1) For further computations, the data is also divided into
windows using a sliding window approach. The win-
dows have lengths of 1.2s of recorded data, for all data
types and are moved in steps of 0.2s over the whole set.

2) The sums of each data type for acc, gyr and or data are
computed over the time line for the absolute values.

2) Model Design: For the sequence selection, we use the
normalized sum of all axes over all sensor types separately,
as discussed in section IV-A1. When comparing the curves
over the samples, there are three main characteristics we can
distinguish, as can be seen in Fig. 2. Firstly, the acc curve

Fig. 2. Sum curve of acc (red), gyr (black) and or (green). The blue vertical
lines mark the areas selected by the variance selection with a window length
of 60 (about 1.2s), y-axis normalized to 1, x-axis in seconds

as well as the gyr curve show one very volatile area, which
overlaps time wise. Additionally, the orientation curve shows a
very pronounced bulk with a very small dip around the center.
This is usually also overlapping with the strongly volatile area
of the other two curves. Preceding and following this area,
the gyroscope data especially shows a bulk which frames the
area. A clear border selection is not possible in our case
as the window length needs to be the same length for all
samples to be usable for the machine learning model. The
lengths of the setting actions however vary to some degree.
The window is correctly placed in a way that the volatile area
is center of the window or slightly in front, if the windows do
not match perfectly. Using these insights, we summarize the
characteristics as:

1) Very volatile area, at least partly overlapping for acc and
gyr curves

2) Strong bulk with small dip for the orientation curve
The vertical lines in Fig. 2 show a sequence selection

example, according to the defined rules.
3) Variance Selection: After theoretically establishing the

sequence selection we next discuss the computational ap-
proach to select this area over all samples. Firstly, the variance
in relation to the full dataset is computed for each window of
acc and gyr data. The following steps are taken to select the
window.

1) The window X with the highest variance is pre-selected
per sensor type j.

2) After selecting the windows with the highest variance
per sensor type for acc and gyr, the average window
location between the two types is being computed.

3) The selected windows are then transformed to a sam-
pling rate of 200Hz so that they are also usable for the
EMG data.

This selection of the setting action in the set enables us to
select the same area in every dataset. Of this selection, a sub-
length can be selected which depicts, e.g., different phases of
the setting movement.

V. MOVEMENT CLASSIFICATION

The selected sequences of the data sets are used for the
movement classification. Only the computed sequence borders
are used to subset the un-normalized datasets. As introduced
in section III-A there are two sets of labels which are being
tested to classify the movement of the player in the following.

A. Model Design Convolutional Neural Network

The machine learning model is built similarly to the model
suggested by Ordonez [12], in which a deep convolutional
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and LSTM Recurrent neural network for multimodal wearable
activity recognition is introduced. The model is built in a
recurrent LSTM architecture which is a special kind of re-
current network application, capable of learning long term de-
pendencies [9]. The features of the model are extracted by one
dimensional convolutional layers. There are four convolutional
layers set in a row, creating layers 2-5. Those recurrent layers
are used to model the temporal dynamics of the activation of
the feature maps. This means they process the input only along
the axis representing time [12]. The convolutional layers use
rectified linear units (ReLUs) as an activation, computing the
feature maps using the sigmoid function. Results of Ordonez
et. al. show that a depth of at least two recurrent layers is
beneficial when processing sequential data [12]. Therefore,
two dense layers are added as layer six and seven. The last
layer is computed as a dense layer using a softmax activation.
The filters are the same for every convolutional layer, being
defined as 5 × D, where D is the number of channels.

The model is built separately for acc, gyr and or data as
well as for the EMG data as the sampling rates differ, which
leads to different time lines of the datasets. The suggested
model by Ordonez [12] is used in combination with a sliding
window approach as the data is collected in a constant stream.
In this case, the actual setting action is already preselected, so
no further window function is used.

1) Input Data: Through the usage of the ‘Myo’ sensor,
we obtain multimodal time series data of four different types.
Using the previously discussed sequence selection, we were
able to select the same data sequences for all sets. The different
setups for the window lengths can be found in Sect. VI-B.

The acc, gyr and or datasets can be stacked by their time
line, as they have the same sampling rate. For the EMG data,
with a higher sampling rate, all 8 nodes are stacked as a
second set. For both, the raw data is being used in the selected
sequence. The datasets are matched with the according ground
truth labels, which are discussed in Sect. III-A. The datasets
are split into 70% trainings data as well as 15% validation and
test data each. As the labels are not equally distributed, the
classes are oversampled to avoid over-fitting. The samples of
the minority classes are therefore chosen randomly and copied.

VI. RESULTS

A. Ground Truth Labels

1) Subjective Labels: The subjective labels directly depict
correct or incorrect movement, including its magnitude. This
approach can more easily be challenged in its correctness as it
is a personal impression of the movement of a domain expert
using coaching rules. When doing this, multiple movements
are summarized to one label containing different manifesta-
tions. The labeling process is simpler than a more hierarchical
and objective approach, as the differences between the classes
on the video data are better distinguishable. This is therefore
also expected to increase consistency.

2) Scoring Function: As discussed, there are only two
manifestations per subjective label summarized into the infor-
mation, which is whether the setting action has been ‘allowed’

or ‘not allowed’. The information is less detailed than with
the before mentioned labels. On the other hand, consistency
is improved, as there are fewer classes to differentiate when
using the video data. Depending on the skill level of the player,
we suggest that for beginners the scoring function should be
sufficient. The more advanced the skills of the player, the
more important detailed information about the problems of
the action is required.

B. Sequence Selection

The variance selection is used on the full dataset to gather
the correct sequence. These pre-selected windows are manu-
ally checked to evaluate the results in comparison to the rules
defined in Sect. IV-A2. Of all 383 used sample datasets 54.4%
show perfect results, 26.6% of the selected sequences show
minor displacements of about one window length, which is
200ms. The remaining 19.3% show an average displacement
of 518ms. Perfect alignment means the volatile area of the
acc and gyr data was placed in the middle of the window.
If the spacing did not allow perfect alignment, the window
was placed in favor of the earlier time steps. An example
of a correctly selected phase can be seen in Fig. 2. The
selected window is used for orientation in the dataset. The
actual window borders are extended from this selected area as
a starting point to a length of 2s. The variance selection is an
easy way to get a sufficient first sequence selection. Adding
further statistical features or a machine learning model in the
future will be a promising and easy way to improve the results
as well as incorporate these insights into a real-time selection.
The sequence selection is corrected manually and perfectly
selected sequences are used for the classification. Through this
first variance selection, we can establish a way to coordinate
through the dataset. This means we can select the same area
with a certain sub-length in every dataset.

C. Movement Classification

The two preceding results, concerning the ground truth and
the sequence selection of the setting action are now used to
classify the movement. From the result of the ground truth
set up, we learned that both ways of labeling are interesting
if a sufficient number of samples is available in the set. The
results of the sequence selection show that we are capable
of capturing the important sequence through the variance
selection. This selection can now be used to get a sub-length,
which optimizes our classification result for each label.

In the following the results of the machine learning model
are evaluated in terms of the F1-score for the optimal sub-
lengths of the data.

D. Range Evaluation for Machine Learning

Even though we are capable of navigating in the data sets
through the sequence selection, we still do not have further
insight on whether the full sequence is yielding best results
or a sub-length of the movement. Therefore, a test has been
set up in a way to evaluate sub-lengths of the sequence
selection, using the machine learning model. This consists of
the following steps:
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TABLE I
BEST SUB-LENGTH IN DATAPOINTS (DP) OF MAXIMUM LENGTH OF

100DP/2S OF AGO DATA. CORRESPONDING F1-SCORE OF BEST AGO
SUB-LENGTH AND ST. DEV. BETWEEN THE RESULTS PER STEP OF

3DP/60MS. BEST SUB-LENGTH F1-SCORE OF EMG DATA.

Best F1-score Std. Dev. all Best F1-
sub-l. AGO AGO sub-l. windows AGO Score EMG

Subj. Labels
Arm P. 0:23 0.35 0.05 0.32
Hand 0:41 0.64 0.06 0.38
Wrist 0:47 0.48 0.06 0.48

Timing Arms 0:80 0.74 0.08 0.60
Moving/Sta. 0:35 0.69 0.07 0.64

Scoring
Score A 0:95 0.64 0.07 0.58
Score W 0:98 0.72 0.08 0.65
Score H 0:83 0.72 0.08 0.62

1) A sub-length of the selected sequence is computed,
starting with a minimum length of 400ms from the start
of the selected sequence

2) These shorter samples are being used to train, test and
validate the model as defined in Sect. V

3) Extend the sub-length by 60ms and run the model again
Results of this technique provide information on whether a
sub-length of the sequence selection yields best results in terms
of the F1-score or if this does not influence the results. Table
I shows the results in terms of the best F1-score as well as
accuracy and recall for each label and dataset. Looking at all
results per range and label shows, that the F1-scores of the
sub-length windows are overall only marginally better than
the full window selection. The standard deviation between the
different ranges is very small and there are only small changes
of the achieved F1-score. Especially looking at the variance
between the F1-scores in the ascending window length, it
shows that there is no clearly distinguishable trend. Still, the
results for specific windows do yield better result in some
cases, even though this can not necessarily be tied to the
above-mentioned theory. The EMG data sub-length results
show similar outcomes. Overall, the results per label are not as
good as the usage of the acc, gyr and or data. Some differences
can be seen in the sub-length. Of the full length of 400 data
points, the majority of best sub-lengths are located in the first
half of the dataset.

VII. FURTHER RESEARCH

This preceding research leads way for further analyses. For
the ground truth gathering, a more objective approach could
be designed to have less bias concerning the labeling. Further-
more, the impact of individual differences between the players
e.g. height or arm length on the results, could be further inves-
tigated. For the sequence selection, a more sophisticated model
which can detect a setting action in a dynamic environment
including data streams instead of separate datasets would be
an advancement. So far, the identification of the setting action
is limited to the same length, further investigations about exact
identifications would be beneficial. Also, the classification
algorithm did yield feasible results which, however, leave room
for improvement through a different setup e.g. using acc, gyr
and or data in combination with EMG data.

VIII. CONCLUSION

The paper shows, that it is feasible to describe the setting ac-
tion with IMU and EMG sensors and the usage of performance
classes, which are directly related to the mistakes made. Espe-
cially the scoring function led to good results. The sequence
selection is an important part in the activity recognition and
is, in combination with the machine learning model, a feasible
approach to classify the setting action technique which can be
directly used as feedback for the player.
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