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Abstract—In this work we address the problem of data-driven
placement of critical bike infrastructure to address user route
demand. The proposed framework uses trip origin-destination
data that is commonly produced by bike share operators and
included in standard data feeds. It does not require intermediate
trip GPS data, which is not yet widely available. To compensate
for lack of full path information in the data, the proposed method
estimates the path of each trip using a shortest path routing
algorithm, which runs on a bike-accessible network graph with
user preferences. We apply this path estimation to each trip,
which results in a volume estimate on each edge in the network
graph. We can then assess the effectiveness of infrastructure up-
grades from trip distance coverage and user impact perspectives.
The framework is applied on a data set of tens of thousands of
dockless bike share trips that occurred during the first month
of a pilot program with ofo bikes at Vanderbilt University.
Case study findings demonstrate that approximately 40% of
observed trip distance can be covered by improving only 5%
of the infrastructure and 75% of trips will travel some portion
of their path on the upgraded infrastructure. This highlights
the significant potential benefits for a modest infrastructure
investment. While the capture rates may be different on each
network, the methodological tools are applicable to data from
any docked or dockless bike share system and infrastructure
network. The tools will serve as the basis for a software platform
that will help any city analyze data collected from shared use
mobility devices including bikes and electric scooters and assess
infrastructure investment.

Index Terms—data, transportation, bicycle, infrastructure,
planning

I. INTRODUCTION

Due to the health benefits for riders, the benefits for
communities, and the reduction of harmful impacts of car
use, increasing the rate of bicycling is achieving significant
investment [1]. The need for dedicated biking infrastructure
(e.g., bike lanes, off-street trails, turn boxes, and signals) is
motivated by the increased safety and comfort for cyclists [2].
Infrastructure investments are important both for existing users
and increasing rates of cycling by inducing demand from
reluctant cyclists [1], [3], [4].

The planning problem of identifying the need and precise
location for dedicated bike infrastructure is multidimensional
and ultimately depends on many factors external to cyclists
themselves that include existing road and sidewalk infrastruc-
ture, cost, safety, and politics [5], [6]. These considerations
can be predicated upon the estimation or measurement of
the number of bicycle trips that will be impacted by the
infrastructure. This quantity is often difficult to measure and
traditional techniques involve user surveys [1], [7], [8] and
data collection from GPS [3], [4], [6].

Compared to cyclists who own their bikes for commuting or
leisure, the prevalence of docked and new dockless bike share
systems create opportunities to collect and analyze data on a
very large scale [9]. Docked bike share systems are comprised
of fixed dock locations where users must pick up and drop
off bikes, and operate in many major cities throughout the
world. Most docked bike share systems only record data on
the origin and destination station of each trip [10]. Dockless
bike share systems are a more recent operational model where
users find and unlock an available bike and may drop the
bike off anywhere at their destination. These systems record
GPS data of origin and destination locations and some may
record GPS data at regular intervals from the bike or user’s
smartphone [6]. However, the GPS data can have very low
temporal resolution, if it is reported at all.

Surveys of commuter and leisure cyclist behavior have
shown that cyclists are willing to travel a longer route utilizing
dedicated bike infrastructure, compared to a shorter route
without dedicated infrastructure. This increased route length
has been estimated up to 20% for off-street bike trails [8] and
10% for on-road bike lanes [11], [12]. Due to the nonzero cost
of installing bike infrastructure, it is desirable to efficiently
install new bike infrastructure to serve as many cyclists as
possible. The effectiveness of a bike network is thereby a
function of the network topology and the distribution of trips
and volume around and through the network.
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This work addresses the problem of data-driven place-
ment of bike infrastructure based on network topology and
distribution of observed trips. The objective is to find the
volume of trips on a network segment, which has the notable
difficulty of data sparsity with regard to bike trip data. The
framework we develop requires only origin-destination data
gathered from shared bike systems. It estimates trip paths
by shortest accessible path routing between trip origin and
destination on the exact infrastructure network. Trip paths are
aggregated to estimate volume at all points on the network and
assess the impact of infrastructure upgrades. The framework
can also take into account induced path changes as a result
of new infrastructure and user preferences. This framework is
straightforward to implement and useful for cities with a large
volume of bike share data to evaluate existing and potential
bike infrastructure upgrades. We illustrate the effectiveness
through a case study on bike share data at Vanderbilt Uni-
versity, which is an example of the canonical last-mile setting
(i.e., on a college campus).

To our knowledge, the only other work on the problem of
data-driven bike infrastructure assessment and planning is that
of Bao et al., which used GPS trajectory data collected from
over 230,000 shared dockless bikes in Shanghai, China [6].
The placement of bike infrastructure is posed as an optimiza-
tion problem, where constraints include budget, construction,
and utilization.

The problem of identifying links in a network to upgrade
is a common issue facing planners and governments [5], [6].
It is closely related to work in network resilience where
links are similarly identified for investments to reduce risk
and vulnerability of the network. The study of transportation
resiliency can be viewed from graph theoretic perspective
based on network topology, supply, and demand [13], [14].

The remainder of this paper is organized as follows. First,
we describe the methodology used in the proposed framework.
Second, we present the details of the dockless bike share
pilot program and case study at Vanderbilt University. Third,
we present the results of applying the framework to the
case study, including the volume estimation and assessment
of potential infrastructure upgrades. Finally, we discuss the
results in the context of both the case study and general bike
planning, including limitations and practical implications; we
also outline future work on this framework and platform.

II. METHODOLOGY

In this section, we detail the methodology in the proposed
framework, which is designed to use bike share trip origin-
destination data to estimate the volume on each segment
of the network. Precisely, this includes processing of bike
share data, construction of a bike-accessible network graph,
routing of trips across the graph, and assessment of potential
infrastructure upgrades.

A. Bike share data

Each record in the raw bike share data is a single trip that
includes a unique trip ID, ID of bike used, origin timestamp

(local time zone), origin location (latitude, longitude), des-
tination timestamp, and destination location. From this, we
can place the trip spatially in the network and/or match the
origin and destination points to specific predefined locations
(e.g., bike docks, designated parking). Origin-destination data
is used to filter out trips that contain obvious data errors. For
example, timestamps at each origin-destination point are useful
for identifying and removing outliers that report unreasonable
average trip speeds.

B. Network graph, routing, and cost function

We construct a directed, weighted graph for a bike acces-
sible network, G = (V,E), made up of vertices, V , and
edges, E. Edges represent existing infrastructure, such as
roads, sidewalks, or crosswalks, across which bike trips can be
routed depending on local regulations. Vertices are simply the
intersections between edges at logical points of delineation,
such as a road intersection or the termination point of a
sidewalk.

The process of associating trip points to a network graph
is referred to as map matching. Origin-destination coordinates
are associated with the closest vertex in the graph computed by
Euclidean distance. The closest vertex must be, at maximum,
150 feet from the origin or destination point, which accounts
for parking away from paths or high GPS error caused by
cover or buildings. In the case that one or both of the points
does not match a graph vertex, the pair is disregarded.

A shortest path routing algorithm finds a shortest path
between two graph vertices such that the sum of edge costs
forming a path between vertices is minimal. In the present
work, shortest path routing for a bike trip between the cor-
responding vertices on the infrastructure graph is done using
Dijkstra’s algorithm [15]. Dijkstra is the seminal algorithm
used for shortest path routing for a graph with positive edge
costs, and is typically sufficient for small graphs. There have
been many enhancements to Dijkstra’s algorithm (e.g., A*,
bidirectional search, and other modern routing algorithms) [16]
that are applicable for large graphs or large amounts of trips.

We construct a generalized cost function for graph edges
that quantifies in real units the time required to traverse the
edge and takes into account factors for bicycle accessibility
and user routing preferences. Edges in the graph are labeled
as accessible by bike based on whether or not they spatially
intersect with any obstructions (e.g., stairs). User preferences
are accounted for by penalizing edges that intersect roads,
where waiting time and discomfort may be associated with
crossing. This function, for edge i, takes the form

ci =
li
vbike

+ ritroad + sitstair, (1)

where ci is the cost assigned to edge i in terms of time cost
to traverse, li is the length in feet of edge i, vbike is the bike
velocity in feet per second, ri is an indicator variable that is
equal to 1 if edge i crosses a road and 0 otherwise, troad is
the additional time cost in seconds for edges crossing a road,
si is an indicator variable that is equal to 1 if edge i crosses
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a road and 0 otherwise, and tstair is a large time penalty in
seconds to heavily penalize edges intersecting stairs. This work
assumes reasonable values for troad and tstair but these values
could be chosen based on a particular locale or scenario. This
cost function makes the notable assumptions that 1) all user
operate at the same speed, vbike, which we later assign to be
the mean speed of trips in the dataset, and 2) speed over each
trip path is uniform; these assumptions are addressed further
in Section VI.

C. Induced path changes

The consideration also exists that volume is elastic to
the built environment and that cyclists will take a longer
path with respect to length in order to use upgraded bicycle
infrastructure (e.g., bike lanes, off-street trails, turn boxes, and
signals). As discussed in literature in the Introduction section,
cyclists will ride 10% and 20% longer routes to use upgraded
infrastructure [8], [11], [12]. We therefore take δ > 0 to
be the relative increase in cost that cyclists will ride, and
assign values δ = 10% and δ = 20%. We can equivalently
reduce the cost of upgraded infrastructure by the factor 1

1+δ
because under this assumption an upgraded link of length
li(1+δ) is equivalent to a non-upgraded link of length li. The
resulting cost (which now represents a real time cost with a
user experience factor), cimproved

i , of an upgraded edge is

cimproved
i =

li
vbike

+ ritroad + sitstair

1 + δ
. (2)

D. Infrastructure upgrades

The given problem of upgrading infrastructure such that
user impact is maximized can be posed as an optimization
problem, such as in [6]. Here, we perform greedy assignment
of infrastructure upgrades on network graph edges according
to trip volume, where the edge with the highest estimated
trip volume is the first edge upgraded. Likewise, the second
edge to receive an upgrade is the edge with the second
highest estimated trip volume. We would expect that beginning
with the highest volume edges, the addition of upgraded
infrastructure to each would impact a relatively large share
of trips. As we upgrade infrastructure on edges with lower
volume, the trips impacted would gradually diminish until the
least used edge gains little or no additional benefit.

In the case of induced path changes, the routing of all trips
must be reassessed after each infrastructure upgrade. This is
due to the fact that an edge weight is reduced each time an
edge is upgraded and this may change some trip paths.

III. DOCKLESS BIKE SHARE CASE STUDY

In this section, we introduce the dockless bike share pilot
program at Vanderbilt University, present some descriptive
statistics of the data gathered, and discuss the network graph
constructed for campus.

Fig. 1: Geofence set up for shared bikes (orange outer
boundary) that encourages rides to stay within Vanderbilt
jurisdiction. The approximate campus extents are shown in
purple with campus facilities in green.

A. Pilot program

In March 2018, Vanderbilt University began a six-month
pilot program with ofo, an international dockless bike share
operator. The pilot program complements the goals of the
University’s land use strategy and transportation strategy,
both of which endeavor to increase the share of commute
alternatives to single occupancy vehicles. The timing of the
pilot program coincides with the evaluation and regulation
of similar dockless shared use mobility systems by cities
across the country. In the first month of operation, the pilot
program was free for Vanderbilt users and generated tens of
thousands of rides. The exact number of rides is confidential
ofo information and for this reason, descriptive statistics and
results are presented normalized by this total number of trips
within the first month of the pilot.

Included in the pilot program agreement was the estab-
lishment of a boundary referred to as a geofence. Users
were encouraged to keep their rides within the geofence. An
overlay of the ofo geofence (orange) on the campus boundary
(purple) is shown in Figure 1. The geofence proved effective
in containing trips, with 95% beginning and ending within the
boundary.

B. Descriptive trip statistics

The primary data product from the pilot program is the
origin-destination location coordinates and start and end time
of each individual trip. Through this data, we are able to
see that the vast majority of trips were quite short. They
had a mean distance of 0.41 miles and mean duration of 6
minutes. For reference, a trip from some primary on-campus
housing locations to the core of the academic campus is about
0.6 miles and the full width and length of campus are both
approximately 0.9 miles. Trips with duration of less than two
minutes and greater than 15 minutes were almost exclusively
anomalous and regarded as outliers. Mean speed of all trips
was 4.3 mph and, likewise, trips with average speed less than
1 mph or greater than 20 mph were removed as outliers. The
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Fig. 2: Distributions of trip distance, duration, and speed (top
to bottom) for the first month, with outliers removed.

distribution of trip distances, times, and speeds with outliers
removed are shown in Figure 2.

C. Campus network graph

The routing graph for the campus infrastructure is con-
structed by processing up-to-date GIS data layers for paths
and sidewalks into the graph edges. We assume that cyclist
routing on Vanderbilt’s campus for this case study will involve
a negligible amount of road use and routing along roads
can be handled by adjacent sidewalks, so roads with parallel
sidewalks are processed into one edge in each direction.

The edge cost ci has units of seconds. We set vbike = 6.3 to
be the mean trip speed in feet per second, troad = 120 to be a
reasonable time cost (in seconds) of waiting at an intersection,
and tstair = 900 such that routes cross stairs only with no other
reasonable option. Alternatively, edges intersecting stairs (i.e.,
si = 1) could be removed from the graph, entirely.

User preferential routing that accounts for the effects of
crossing roads manifests itself commonly in the data on two
pedestrian bridges that cross a major road through part of
campus. One of these bridges is highlighted in yellow in
Figure 3 with the vertices (light blue points) and edges (blue
lines connecting points) of the overlaid network graph. The
edge crossing the road at street level (grey) has the time
penalty applied, while the route crossing the bridge (red line)
is not penalized. It is observed that the overwhelming majority
of cyclists or pedestrians cross this location on the bridge if
not required to go to street level based on their destination.

IV. RESULTS

In this section we explore results of upgrading infrastruc-
ture related to three cases: a base case where all trips are
routed along their shortest path using edge weights defined
by equation (1) and routes do not change; and two induced
path change cases where the cyclists will change their routes

Fig. 3: The routing graph is comprised of vertices (light blue
points) and edges (blue lines). Edges cross both a pedestrian
bridge (yellow) and the road beneath the bridge (grey). The
edge crossing only the road will incur a penalty to encourage
routing across the bridge (red line). Stairs are shown as small
orange lines.

and travel 10% or 20% further to use upgraded infrastructure,
according to edge weights defined by equation (2). We first
present the base case volume results. We then look at the two
cases that analyze the impact of trip path changes induced
by upgraded infrastructure. The computational requirements
of the framework are also addressed.

Using the estimated volume, ni, across each edge, we define
the bike distance traveled across edge i as di. Bike distance
traveled is expressed as a fraction of total bike distance
observed such that di = nili∑k

1 mk
, where ni is the number of

trips crossing edge i, li is the length of edge i, and mk is the
length of trip k. We also define two metrics to quantify the
effectiveness of upgrading bike infrastructure to the network:

• trip distance covered - fraction of total bike distance
traveled that occurs on upgraded infrastructure

• trips impacted - fraction of trips that travel any amount
of their estimated route on upgraded infrastructure.

The capture rate of trip distance and capture rate of trips
impacted are defined as the rates at which trip distance covered
and trips impacted increase with the incremental addition of
upgraded infrastructure.

A. Base case

Following the calculation of the shortest path for each trip
according to the cost function, equation (1), we tabulate the
number of trip paths crossing each edge, i, in the network to
be ni. The base case edge-level volume is shown by map in
Figure 4. Visual inspection of Figure 4 reveals two separate
corridors of concentrated volume, colored yellow on the map.

We analyze the effect that increasing the amount of up-
graded infrastructure has on trip distance covered and trips
impacted by greedy assignment of upgraded infrastructure to
graph edges in the order of maximum estimated volume, as de-
scribed in the Methodology section. It follows that trip distance
covered and trips impacted will both increase continually to
capture all observed trip mileage and all trip occurrences until
all edges are upgraded. The blue line in Figure 5 shows the
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Fig. 4: Total estimated volume on each graph edge as a
proportion of total trips observed.

TABLE I: Trip distance covered by fraction of infrastructure
upgraded (in terms of length) on the network, in the base case
and two cases of induced trip path changes.

2% network
upgraded

5%
upgraded

10%
upgraded

25%
upgraded

δ = 0%
(base case)

21% 37% 55% 81%

δ = 10% 23% 40% 60% 85%
δ = 20% 24% 42% 62% 87%

effect on trip distance capture by upgrading infrastructure in
the base case. The first infrastructure upgrades result in large
gains in trip distance covered, but there exists a clear point
of diminishing returns. We see that upgrading just 5% of the
network covers 37% of the total trip distance and upgrading
10% of the network covers 55% of total trip distance. This is
notable because even with no induced routing change (i.e.,
preference for routes with infrastructure upgrades), a very
large amount of trip distance can be captured on upgraded
infrastructure with extremely low coverage of the network.

B. Induced path change cases

Next we consider the cases where upgraded infrastructure is
likely to induce some marginally longer trips to change paths
to use upgraded bike infrastructure. We reduce edge cost for
upgraded infrastructure according to equation (2) using values
δ = 10% and δ = 20%, as explained in Section II.

Unsurprisingly, inducing trips to use upgraded infrastruc-
ture increases the trip distance covered at every amount of
infrastructure improved, as we can see in Figure 5. The
redistribution of trip paths with induced use of upgraded
infrastructure increases the trip distance covered to 42% with
5% of network upgraded and 62% of trip distance covered
by 10% of upgraded infrastructure. Looking at the number
of trips impacted, the trend is even more dramatic: about
75% of trips travel some portion of their route on upgraded
infrastructure after it covers only 5% of the network. A more
thorough tabulation of trip distance covered and trips impacted
for various levels of network infrastructure improvement are
included in Tables I and II, respectively.
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Fig. 5: Fraction of trip distance covered under the base case
(blue line) compared to cases where cyclists are willing to
travel 10% or 20% further to use upgraded infrastructure
(green dotted and red dashed lines, respectively).

TABLE II: Trips impacted by fraction of infrastructure up-
graded (in terms of length) on the network, in the base case
and two cases of induced trip path changes.

2% network
upgraded

5%
upgraded

10%
upgraded

25%
upgraded

δ = 0%
(base case)

57% 74% 85% 90%

δ = 10% 58% 75% 86% 91%
δ = 20% 60% 76% 86% 91%

C. Computational requirements

Computation of shortest path routes for the network in the
Vanderbilt case study required approximately one minute per
10,000 trips on a single threaded implementation of the routing
on a 3.6 GHz 16-core CPU. For the pure shortest path routing
and assessment of upgraded infrastructure in the base case
with no behavior change, shortest path computations need only
performed once. However, when routing behavior changed be-
cause of reduced costs on edges with upgraded infrastructure,
shortest paths must be computed at each installation level.
Approximately 200 installation levels were assessed for each
value of δ. This resulted in a runtime of approximately 15
minutes per 10,000 trips per value of δ. Computation time
could be sped up by a more efficient routing algorithm, but in
the case study gains would be minimal due to the graph size.

V. DISCUSSION

The topology of the Vanderbilt University campus and the
distribution of trip origins and destinations creates definitive
bottlenecks that are easy to identify from the estimated paths.
Even in the base case, the magnitude of this coverage is
dramatic and shows just how little bike infrastructure may be
sufficient to cover a majority of trips. In other areas of campus,
volume is more sparsely distributed. Capture rate of trips and
trip distance is much slower for these areas and would require
significantly more infrastructure to be upgraded.

Under the assumption of induced trip path changes, the
capture rate for the case study is higher and leads to additional
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coverage of 5% of trip distance at the 5% level of network im-
provement. We believe this increased capture rate is realistic.
Given the absolute size of Vanderbilt’s campus and its heavily
pedestrian nature, it is reasonable for cyclists to travel slightly
longer routes to achieve a clear path through congested areas.

The trips impacted by the infrastructure is only slightly
higher under induced path routing, but the rate of trips
impacted is already very high. This rate is significant because
it promotes the positive culture change associated with alter-
native mobility [1].

There exist a few notable limitations of this work. We rely
heavily on 1) the assumption that origin-destination volume
is indicative of path volume between points; that is, cyclists
are riding from their origin to destination without intermediate
stops or sightseeing; and 2) that user preferences for routing
and riding speed are uniform across trips and across the
path (i.e., they are not influenced by exogenous factors).
Additionally, the Vanderbilt network topology is unique and
the distribution of trips creates notable bottlenecks. This
concentration of volume may not extend to other networks.
Lastly, but importantly, the issues of system equity are not
considered. We assume that rebalancing of bikes occurs to
address equity considerations and geographical bias.

VI. CONCLUSION

We present in this work a framework by which origin-
destination data from bike share systems, or otherwise, may
be evaluated in the context of existing and potential upgraded
bike infrastructure. In this manner, we can identify critical
infrastructure segments for improvement and the ridership
coverage that will be associated with them. The framework
accommodates an induced volume factor where cyclists will
travel further to use upgraded infrastructure. The framework
consists of ingestion and exploration of origin-destination
data, routing of individual trips across a network graph of
existing infrastructure, and the evaluation of infrastructure
improvements on estimated paths taken by cyclists.

Using the case study from Vanderbilt University, we test
the framework and find dramatic distributions of trip volume.
Investment in only 5% of the campus infrastructure can likely
cover at least 37% of total trip distance. This is without
the effect of induced infrastructure use, which could result
in the same investment in 5% of the infrastructure yielding
42% of trip distance covered. At this level of infrastructure
improvement, up to 76% of trips could use the upgraded
infrastructure to some extent during trips.

Future work includes extending to personalized routing with
different user speeds and non-uniform speeds across a trip
path. For example, this could take into account topography
of the route, real-time traffic congestion of the area, and
condition of existing infrastructure. Larger networks are also
of interest, which could include docked bike share systems
or other dockless devices such as scooters. We also plan to
incorporate OpenStreetMap (OSM) into the framework so that
it may be trivially extended to any city.

The framework is entirely generalizable and potentially
useful for cities and other entities that are interested in using
data streams from shared mobility devices that are established
and/or gaining popularity. The evaluation of infrastructure in
this manner helps users of these mobility platforms and other
users in the system who walk or own their own bike.
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