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Abstract—In a crowded environment, it is necessary to
safely guide the pedestrians. To archive optimum guidance
control, we need to know the manner in which pedestrians
move. Therefore, several types of studies have been con-
ducted to propose pedestrian flow simulations for repro-
ducing the pedestrian movement under varying situations.
In one of these studies, a simulation was performed by
assuming that all pedestrians will follow a guidance control.
However, there are pedestrians who do not follow the
guidance control because they move based on their own
intentions. Therefore, in this study, we model a route choice
by considering human intention.

Index Terms—route choice, real crowd data

I. INTRODUCTION

Large scale pedestrian flow simulations are used to
evaluate the designs of public facilities, such as stations
and shopping malls, or to evaluate the guidance control
of pedestrian movements at large events. Examples of
large-scale events include fireworks displays, music con-
certs, and sports games. For example, hundreds of thou-
sands of people visit to the Kanmon Straits Fireworks
Festival in Kitakyushu, Japan, every year. Therefore,
approximately tens of thousands of people move from
the fireworks display venue to the nearest train station
toward the end of the event to return home. During this
movement, an appropriate set of navigation instructions
is required to reduce congestion. At the Kanmon Straits
Fireworks Festival, people move using the routes that are
indicated by the black lines in Fig. 1. Further, at a total of
10 guidance points composed of two branch points and
eight pause points, as depicted in Fig. 2, security guards
guide the route and control the movement of people.
The congestion is reduced by dividing the pedestrians
into each route via ”forward/detour” guidance at the 2
branch points. In addition, at the 8 pause points, prevent
large numbers of pedestrians from flowing into the train
station at the same time by stopping the progress of the

Fig. 1: Map of the area around the fireworks display venue and the train
station. The black lines indicate the routes on which the pedestrians
move, and the red circles indicate the branch points, and red crosses
indicate the pause points. The blue squares indicate buildings with
projected guidance information, as depicted in Fig. 2.

(a) Guide to move forward (b) Guide to move detour

Fig. 2: Example of guide projections

pedestrian for a certain amount time via ”progress/stop”
guidance.

It is not realistic to collect tens of thousands of
people for conducting an experiment to evaluate how
smoothly people can move when the guidance control is
changed. However, a pedestrian flow simulation that can
reproduce the movement of a people makes it possible to
evaluate the pedestrian movements while changing the
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conditions several times. Therefore, studies have been
conducted to propose pedestrian flow simulations. Some
of these studies perform simulations by assuming that
people follow the guidance control; however, there are
people who do not follow this guidance because they
move with based on their own intentions. Therefore,
we formulate a route choice model by considering the
intention of people for application to a pedestrian flow
simulation.

In the following section, we describe the previous
studies. In Section 3, we explain the procedure for mod-
elling the route choice. In Section 4, we describe about
a experiment constructing a route choice model using
actual pedestrian data measured via LiDAR. Finally, in
Section 5, we summarize the results of this paper.

II. PREVIOUS WORK

In recent years, many studies of pedestrian flow
simulations using real pedestrian behavior data have
been conducted. These data-driven methods tend to use
video data captured by cameras. For example, Aniket et
al. extracted pedestrian trajectories from the video data
and estimated the state of the pedestrians and learn the
parameters of a motion model. Then, they used these
information to simulate the movement of pedestrians
in a virtual environment [1], [2]. Further, Musse et
al. clustered the trajectories that automatically extracted
from the video data and generated a velocity field in
each cluster. Agents in the simulation then moved based
on the calculated velocity [3].

Some studies use data assimilation methods and video
data to improve their reproducibility. Data assimilation
can improve the simulation results by statistically or
dynamically combining information obtained from both
the actual measurement and the simulation. For example,
Ward et al. used an ensemble Kalman filter as a method
of data assimilation and use video data recorded by cam-
eras installed in a city centr to track pedestrian move-
ments and count the number of people [4]. Moreover,
Sanish et al. simulated the dynamics of occupants and
estimated their real-time spatial distribution in a building
using data assimilation [5]. Other than those, Shigenaka
et al. reproduced the movement of people using GPS
data in addition to camera data and a data assimilation
method [6]. They also studied people’s movements at
the Kanmon Straits Fireworks Festival with the guidance
method is the same as that described in Section 1.
Because it is difficult to measure the movements of all
the pedestrians over the wide area of the entire venue,
they measured the flow of pedestrians in a certain area
using cameras and traced the entire paths of a few
people using GPS. Then, the entire pedestrian flow was

(a) At Branch 1

(b) At Branch 2

Fig. 3: Route choices at the branches.

reproduced from these data using a data assimilation
method. In their study, the pedestrians ’proportion of
division at the branch points is a fixed value, and it is
assumed that all pedestrians follow the guidance control.
In practice, however, the proportion of division at the
branch points changes from moment to moment, and not
all pedestrians follow the guidance control. Therefore,
we model a route choice to reproduce more human-like
movement such as not following guidance control.

III. MODELLING OF ROUTE CHOICE

In this study’s situation, the pedestrian considers two
routes as choices at the first branch point as depicted in
Fig. 3(a), and at the second branch point as depicted in
Fig. 3(b). As depicted in Fig. 3(a), the route of the red
line selected at Branch 1 is denoted Route 1-1 and the
route of the blue line is denoted Route 1-2. Similarly, as
depicted in Fig. 3(b), the route of the red line selected
at Branch 2 is denoted Route 2-1 and the route of the
blue line is denoted Route 2-2.

A. Random Utility Theory

A route choice is regarded as a discrete choice that
selects one option from multiple options. For discrete
choices, the random utility theory [7] is usually used.
This assumes that a person chooses the option that
provides the maximum utility. The choice behavior often
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includes uncertain factors; therefore, the utility fluctuates
stochastically. This is why it is called random utility
theory. In this paper, we define the utility function, as
the following equations for a route and assume that
pedestrians choose the route that maximizes utility.

Uin = Vin + ϵin, (1)

=
∑
k

βikxink + ϵin. (2)

Here, the utility Uin for a certain route n of a
pedestrian i consists of the deterministic term Vin and
the random term ϵin. The deterministic term is expressed
by a linear sum obtained by multiplying the observable
variables xink of size k related to the route choice by
a weight βik. The random term includes terms such
as unobserved variables, factors that can be considered
other than the deterministic term, the error of a function
of the linear sum of the deterministic term, and the
measurement error of the variables of the deterministic
term, and so on.

B. Variables of the Deterministic Term

This section describes the variables x of the deter-
ministic term of the utility function. Senevarante et al.
collected questionnaires from 2, 685 people and inves-
tigated the reasons why they choose certain routes [8].
According to their survey, the number of people who
cited the reason ”short distance” was the highest and the
other reasons are listed in descending order of number
of respondents cited: ”always use”, ”attractive”, ”only
usable” , ”few intersections”, and ”no congestion”. We
applied these to the situation at the fireworks display.

In this paper, we assume that many of the people
who visited the fireworks festival came from outside
the region; therefore, we did not consider the second
reason, ”always use”. Because pedestrian were given two
routes as choices at the two branch points, the reason
”only usable” was also not considered. Because there
are no intersections to consider in the route used, we
also did not consider the reason that ”few intersections”.
In addition to these, the pedestrians in our case want to
go home as soon as possible; therefore, waiting until
a route is available according to the guidance control
at a branch point is definitely a factor related to the
route choice. Further, in order to consider the influence
of other pedestrians, we considered the number of people
selected for each route to be a possible reason. There-
fore, the factors ”distance”, ”attraction”, ”congestion”,
”wait”, and ”number of other people who selected that
route” were used as variables in the deterministic term.

We now describe the method for determining each
variable of the deterministic term.

• Distance
Here, we use the actual map values. The unit is km.

• Attraction
At Branch 1, fireworks can be viewed between
19:50 and 20:40 while waiting at the entrance of
Route 1-1; therefore, it is assumed that Route 1-1
is attractive while fireworks is setting off and a wait
is occurs until Route 1-1 is open. Further, because
there are stalls related to the festivals on Route 1-2,
it is assumed that this route is attractive until 22:00
when the stall close. Routes 2-1 and Route 2-2 from
Branch 2 do not have any attractive features. This
term is 1 if the route is attractive and 0 if not.

• Congestion
For the degree of congestion, we used the density
of the pedestrians on the route. At the Kanmon
Straits Fireworks Festival in 2018, we measured
the flow of pedestrians using LiDAR at the two
branch points as depicted in the Fig. 4. Compared
to RGB-D cameras, LiDAR has the advantages that
it is not affected by light changes due to time of
day or environments, and it can measure a wider
range. As a method for calculating the number of
pedestrians on each route, we used the pedestrian
flow measurement method proposed by Onishi et al
[12] . Fig. 4 shows the analysis results of the data
measured by LiDAR at the branch point. Dividing
the number of pedestrians on the route measured
every second by the area of the route, the density
of pedestrians on the route can be calculated. The
unit is [number of people/m2].

• Wait
As depicted in Fig. 2, security guards guide people
at near the entrance of Route 1-1 at Branch 1 and
near the entrance of Route 2-1 at Branch 2. Using
measurement data via LiDAR, we judged whether
or not a pedestrian was moving at the guidance
position at a certain time, and the presence or
absence of a sait was determined. When a wait is
occurs due to the guidance control of the security
guards at entrance of Routes 1-1 or 2-1, this term
is set to 1, otherwise it is set to 0.

• Number of others who selected that route
Using the measurement data via LiDAR, we calcu-
lated the route choice number per second. In this
paper, the number of people who choose each route
in a five-second period is used as a variable.

Using the above discussion, the deterministic term is
defined as in a following equation. TABLE I shows an
example of data that were actually used.
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(a) Guide to move forward (b) Guide to move detour

Fig. 4: Measurement of the pedestrian movement with LiDAR at a
branch point. These figures correspond to the scenes as depicted in
Fig. 2.

TABLE I: Example of the variables of the deterministic term.

place time choices distance attract density wait other
Branch 1 19:30:00 Route 1-1 0.325 0 0.437 1 5

Route 1-2 0.575 1 0.220 0 0
21:00:00 Route 1-1 0.325 0 0.693 1 0

Route 1-2 0.575 1 0.347 0 3
22:30:00 Route 1-1 0.325 0 0.015 0 0

Route 1-2 0.575 0 0.0 0 0
Branch 2 19:30:00 Route 2-1 0.135 0 0.227 0 0

Route 2-2 0.325 0 0.134 0 1
21:00:00 Route 2-1 0.135 0 0.32 1 0

Route 2-2 0.325 0 0.205 0 10
22:30:00 Route 2-1 0.135 0 0.093 0 0

Route 2-2 0.325 0 0.046 0 2

Vin = β1 × distancein + β2 × attractin

+β3 × densityin + β4 × waitin

+β5 × otherin.

(3)

C. Route Choice Model

Route choice models using random utility theory can
be classified into a Multinomial Probit Model (MNP)
[9], which assume a normal distribution in the random
term, and a Multinomial Logit Model (MNL) [10],
which assume a gumbel distribution. The cumulative
distribution function and the probability density func-
tion of the gumbel distribution, which is a probability
distribution similar to the normal distribution, are given
by equation (4) and (5), respectively. In this study, we
use MNL, which is popular and easy to use, and a
Mixed Multinomial Logit Model (Mixed MNL) [11]
as the route choice model. Mixed MNL assumes that
the weights of the variables of the deterministic term
follow a probability distribution and that the weights
differ among individuals. In this study, we assume that
the weights of the variables of the deterministic term
follow a normal distribution.

F (ϵ) = exp [− exp{−λ(ϵ− α)}] , (4)

f(ϵ) = λ exp{λ(ϵ− α)} exp[− exp{λ(ϵ− α)}. (5)

Next, the estimation of the weights of the variables
of the deterministic term of the route choice model
is described. First is the case of MNL. Given the

parameters of the gumbel distribution as α = 0 and
λ = 1, the probability that a pedestrian i chooses a
route n is given by

Pi(n) = Pr[Uin > Uim, for∀n,m ̸= n], (6)

=
exp (Vin(βik))∑
M exp (Vim(βik))

, (7)

where k represents the number of variables in the
deterministic term, and in this study k = 1, · · · , 5, and
M indicates the number of choices. From the above, the
likelihood function and the log-likelihood function are

L(β) =
∏
i

∏
n

Pi(n)
yin , (8)

lnL(β) =
∑
i

∑
n

yinPi(n), (9)

respectively, where yin is 1 when a pedestrian i selects a
route n and 0 otherwise. The parameters that maximize
the log-likelihood function are estimated.

Next, the parameter estimation of the weights of
Mixed MNL is described. Assuming that the weight βik

follows a normal distribution with an average µk and a
standard deviation σk and setting the parameters of the
gumbel distribution to α = 0 and λ = 1, the probability
that a pedestrian i chooses a route n is given by

Pi(n) =

∫ [
exp (Vin(βik))∑
M exp (Vim(βik))

f(βik|µk, σk)

]
dβ.

(10)
In the case of Mixed MNL, because the log-likelihood

function expressed by equation (9) includes an integral
form and cannot be analytically obtained, it is calculated
via a numerical simulation. We generate R random
numbers that follow the normal distribution via Halton
extraction and use the parameters β(1),β(2), · · · ,β(R)

to calculate the log-likelihood function. Then, the pa-
rameters that maximize this log-likelihood function are
estimated.

IV. EXPERIMENTS AND RESULTS

This paper deals with the movements of tens of thou-
sands of people from the venue at the Kanmon Straits
Fireworks festival to the train station. We estimated the
weights of the route choice model using the measure-
ment data at the Kanmon Straits Fireworks Festival in
2018. Both Branch 1 and Branch 2 were treated the
same when estimating the weight and evaluating the
accuracy of the route choice model. In other words,
we assumed the situation was a route choice with two
routes at a branch point. A total of 29,746 route choices
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were observed. We estimated the weights using 23, 796
observations: 80% of the total data. To consider the
difference in the number of parameters based on the
pseudo decision coefficient [10] depicted in equation
(11), we used the degree of freedom adjusted pseudo
decision coefficient depicted in equation (12).

ρ2 = 1− lnL(β̂)

lnL(0)
, (11)

ρ̄2 = 1− lnL(β̂)−H

lnL(0)
, (12)

where lnL(β̂) is the log-likelihood value when using
the estimated parameters, lnL(0) represents the log-
likelihood value obtained when all parameters are 0, and
H is the estimated number of parameters. We confirmed
the accuracy of route choice using the 5, 950 data:
remaining 20% of the total data. The utility function
was calculated using the estimated weight, and the
coincidence ratio between the route with the highest
utility and the route actually selected was used as the
evaluation value.

TABLE II shows the results of the weight estimation
of MNL. TABLE III shows results of the parameter
estimation of Mixed MNL for the Halton extraction
times R = 1, 000. In the tables, ∗ ∗ ∗ and ∗∗ represent
significance levels of 0.001 and 0.01, respectively. The
degree of freedom adjusted pseudo decision coefficients
of MNL and Mixed MNL were 0.229 and 0.260, re-
spectively, and the accuracy of the route choices were
65.4% and 66.7%, respectively. Therefore, Mixed MNL
performs better than MNL and is used as the route choice
model. Route choices accuracy of 66.7% is not very high
compared to a general binary classification problem;
however, considering that it deals with uncertain factors,
it is thought that this level of accuracy is acceptable for
a route choice model.

At Branch 1, when Route 1-1 is closed by the
guidance control, there are several pedestrians waiting
for Route 1-1 to be open as depicted in Fig. 5. Using
CrowdWalk [13] that is a pedestrian flow simulation,

TABLE II: Estimated weights of MNL

coefficient estimate z-value

distance -1.739 -12.895 ***
attract 0.116 3.106 **
density -0.291 -2.865 **

wait -0.4808 -14.240 ***
other 0.204 64.004 ***

ρ̄2 0.229
accuracy 65.4%

TABLE III: Estimated parameters of Mixed MNL

coefficient estimate z-value

distance.mu -29.412 -9.864 ***
attract.mu 0.786 0.776
density.mu -1.699 -0.915

wait.mu -10.055 -11.990 ***
other.mu 6.401 96.614 ***

distance.std 96.597 -21.352 ***
attract.std 54.543 20.646 ***
density.std 3.286 0.258

wait.std 2.206 0.470
other.std 4.708 47.806 ***

ρ̄2 0.260
accuracy 66.7%

Fig. 5: Measurement of the pedestrian movement with LiDAR at
Branch 1. There are several pedestrians waiting at the entrance of
Route 1-1 for Route 1-1 to be open.

we confirmed whether human-like movement can be
expressed with Mixed MNL. The pedestrians are gen-
erated, and at Branch 1, the pedestrians select a route
according to Mixed MNL. As depicted in Fig. 6, we
can see that the pedestrians who want to select a route
with a shorter distance even if there is a waiting time,
wait at the guidance control points can be reproduced.
Therefore, it is obvious that the proposed model can
reproduce a human-like behavior, and it is considered
that a pedestrian flow simulation with the proposed route
choice model can reproduce more realistic pedestrian
flow.

V. CONCLUSIONS AND FUTURE WORK

In this study, we have constructed a route choice
model using actual data using the movement of tens of
thousands of people. The future works are improving
the performance of the route choice model; therefore, we
will attempt to add factors related to the route choice and
to improve the measurement accuracy. We believe that,
if the performance of the route choice model improves,
we will be able to simulate a pedestrian flow that is close
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(a) Previous model

(b) Proposed model

Fig. 6: The examples of the simulation results at Branch 1. The green and red dots represent the pedestrians; pedestrians that moving are green,
and pedestrians in traffic jams are represented in red. (Left) the state when the Route 1-1 start to be closed. (Middle) the state after 2 min.
(Right) the state when the Route 1-1 is opened 4 min after the route is closed. we can see that the pedestrians not following the guidance, can
be reproduced by proposed model.

to reality. In addition, an optimization of the route plan
using the proposed simulation model can be used for
evaluating the design of public facilities and planning
guidance plan.
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