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Abstract—Broadcasted WiFi traffic of mobile devices is the
foundation of several estimation techniques like location track-
ing or crowd counting. Many pervasive applications use these
techniques to infer the current state of an environment allowing
better planning of resources. A vast majority of techniques use
WiFi probe request frames, which contain the unique MAC
address of a mobile device. This MAC address allows counting of
unique devices and thus, their carriers. To ensure privacy, device
manufacturers introduced MAC randomization as anonymization
technique. This causes a considerable impact on the data quality
of many pervasive applications as randomizing devices create
fake MAC addresses. Previous works show that randomized
MAC addresses can be linked to their origin device using
different derandomization techniques. However, these approaches
are not feasible in practice as novel randomization techniques are
designed to prevent derandomization. Moreover, the frequency
of WiFi probe request frames varies significantly on several
factors making it difficult to estimate device presence in a timely
manner. This paper assesses the challenges with probe request
frames using a new data quality framework for device detection.
Additionally, alternative detection methods that do not rely on
probe request frames are presented. This includes a recently
publicized WiFi device detection technique and a new way of
detecting devices associated with a third-party network using a
feature of the 802.11 protocol.

I. INTRODUCTION

With the emergence of different sensor types and their
increasing capabilities, pervasive computing has become the
major topic over the past years to revolutionize the manage-
ment of resources, like required working staff [4] or public
transport [5]. This management relies heavily on knowledge
about the real world which is provided by a set of sensors.
For instance, by monitoring an area, it is possible to create a
multitude of useful insights about a population like movement
patterns or the number of occupants. These insights can
be used by private and public facilities to provide more
efficient and reliable services, like recommendation systems
for evacuation scenarios [6], [15] or physical as in public
transport optimization by anticipating pedestrian volume and
flow [5]. Moreover, retailers can organize their stores and
improve business by evaluating which spots were visited by
more customers and whether a visitor returned [7].

Although crowd counting has been the topic of numerous
scientific works, there exists no state-of-the-art approach [1].
One explanation is that the method of choice is highly
dependent on the constraints of the deployment scenario.
For example, counting people with cameras requires many

installations, does not allow monitoring through walls and may
raise privacy concerns. Less invasive alternatives like crowd
counting using light inferences [14] can be very precise for
small crowds in indoor environments but do not perform well
on scenarios with larger crowds.

A promising approach which overcomes these challenges is
WiFi-based crowd counting. WiFi signals can not only pass
through walls but monitoring sensors are also cost-effective
to install. With the continuous adoption of mobile devices
like smartphones or smartwatches it has never been easier
to track people and create useful insights about crowds. The
method of choice for crowd counting with WiFi signals can be
either device-free methods or device-based. Device-free meth-
ods measure the variance in received signal strength caused
by people blocking the signal path between a sender and
receiver [8], [16]. These methods are very privacy-protective
but become imprecise with increasing size of the crowd and
are dependent on the movement of persons.

In contrast, device-based methods measure and analyze the
emitted WiFi traffic of devices, assuming they are carried by
people [4]. I.e., a wide range of works successfully used broad-
casted probe request frames to count and track devices [4],
[6] [10]. However, this poses major privacy issues which have
to be considered by including anonymization techniques or
Privacy by Design principles on application side [11].

The protection of privacy has only recently resulted in
mandatory laws like the data protection law of the European
Union by declaring MAC Addresses as personal data. Instead
of entrusting the application side with privacy measures,
many device manufacturers introduced MAC randomization
as preemptive privacy technique [1] [11]. Furthermore, manu-
facturers made efforts to conceal device presence by reducing
the frequency of probe requests. As a result, this paper focuses
on the impact of current MAC randomization implementations
and varying probe frequency on data quality and proposes
alternative methods for device detection.

Problem Statement

Privacy protection techniques for WiFi traffic lead to spe-
cific problems when trying to track or estimate the number of
devices in an area. In order to build a robust crowd counting
application, the following problems need to be considered:

Fake Devices: How can we relate monitored probe requests
to devices? Before MAC randomization, each MAC address
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could be mapped to its source device in a 1:1 relationship.
However, a device with active randomization scheme can
produce multiple probe requests with different MAC resulting
in a 1:N relationship between device and probe request MACs.
This produces a significant error when trying to count the
number of unique devices based on probe requests.

Detection Latency: When do we detect a device? The
frequency of probe requests is dependent on WiFi connection
status, manufacturer, energy mode and level of user interaction
resulting in a wide range of probing behaviors. At worst the
device is never seen even if it stayed for a reasonable amount
of time in the sensing area. Additionally, some devices reduce
the number of probe requests to a minimum when connected
to a network. Furthermore, probe requests do not allow the
determination of device absence which requires systems to
estimate when a device supposedly has left the area. Since
probe frequency varies considerably, this approach can cause
either an over- or underestimation error of device presence.

Device-Person Mapping: How can we relate detected de-
vices to people? Depending on their context some persons
might not have their WiFi activated or do not carry a device at
all making them invisible to mobile WiFi detection. Moreover,
one person can carry a multitude of different WiFi capable
devices like business phones, laptops, smartwatches or reading
pads. Hence some persons and their devices are never sensed
while others are recognized as multiple actors. This problem
can be solved by comparing ground truth data with sensed
devices and creating a model for estimating the error. Since
this model relies on the correctness of the sensed devices its
accuracy is highly dependent on the solution of Fake Devices
and Detection Latency problems.

The influence of MAC randomization on the Fake De-
vices problem can be minimized by using derandomization
techniques as presented in several recent works [1] [11].
Nevertheless, the success of such techniques is highly depen-
dent on the randomization degree used by manufacturers and
remains ineffective considering state-of-the-art randomization.
It also does not solve the problem of Detection Latency
as the frequency of probe requests cannot be influenced by
a third party. Hence this paper focuses on solutions which
improve data quality even when randomization is implemented
correctly and probing frequency is low.

In this paper, we take a close look at the impact of MAC
randomization on the data quality for crowd counting appli-
cations. We provide the following contributions for pervasive
applications based on WiFi traffic:

• Introduction of data quality metrics for the task of WiFi-
based device counting

• Insights on the behavior and impact of state-of-the-art
MAC randomization

• Evaluation of a recently publicized approach for active
device detection despite randomization

• Presentation and evaluation of a feature in the 802.11 pro-
tocol allowing real-time detection of devices connected to
a third-party network

We provide explanations on how these findings solve prob-
lems with Fake Devices and Detection Latency using experi-
mental data. Moreover, we make real-world assumptions often
overlooked by other crowd counting papers such as different
device contexts. For instance, the estimation of devices and
crowds is highly dependent on whether devices are associated
with a network. To the best of our knowledge, we are the first
to show how a particular feature of the 802.11 standard can be
used to detect devices in an associated state. Furthermore, we
present a novel way to assess data quality for device counting
purposes within different contexts.

II. RELATED WORK

Although multiple works used WiFi traffic to count crowds
[4], [6], none of them explore the impact of MAC randomiza-
tion on data quality in depth. In practice, most applications
focus on solving the Device-Person Mapping directly by
using ground-truth data and raw probe request observations
instead of trying to solve the Fake Devices and Detection
Latency problems first. This works only as long as devices
with MAC randomization represent a minority. This seems
unlikely considering the continuous adoption among device
manufacturers [11]. Hence, analyzing and defeating MAC
randomization was covered by various recent papers.

The work of Musa et al. [17] presents first passive and
active methods for device detection. Unfortunately, their work
does not cover MAC randomization as it was only in recent
years widely adopted among manufacturers. A comprehensive
study on probing behavior was conducted by Freudinger [2]
in various experimental settings. He showed that probing
frequency is dependent on a multitude of factors like man-
ufacturer, battery level, user interaction and number of stored
access point SSIDs. Although MAC randomization was not
widely established across manufacturers during the time of
the experiments he observed randomized probe requests by
an Apple IOS 8 device. Furthermore, he explored the first
possibilities for relating a randomized probe to its original
device by using particular packet fields like Sequence Num-
bers or WiFi Protected Setup (WPS) information. Vanhoef
et al. [3] explored different methods for relating a single
or multiple observed randomized MAC to its source de-
vice enabling location tracking and counting. The proposed
methods make use of different packet fields which provide
useful information about device identity. For instance, the
WiFi Protected Setup (WPS) field of a probe request can be
used to link randomized probe requests to their source device.
Additionally, they provided a method using the Sequence
Number Field which is increased for every new probe request
creating a link between two probes from the same device.
To prevent such derandomization methods, privacy-protective
device manufacturers removed the WPS content field and the
incrementation of sequence numbers. The work of Martin et
al. [1] and Matte [11] provide a good overview of both active
and passive derandomization techniques. Moreover, Martin
et al. claim to have found a way to actively derandomize
100% of devices across all manufacturers using customized
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WiFi control frames. Their remarkable findings have been
picked up by several computer and security blogs without
further investigations. Since this method could enable location
tracking and counting of devices despite randomization, it
would be perfectly suitable for improving data quality in crowd
counting applications. As a result, this paper assesses the
proposed method thoroughly with regards to its applicability.

III. PRELIMINARIES

In order to assess the effectiveness of certain methods, one
must first define how data quality can be measured. As a first
step, we decided to focus solely on the task of crowd counting
as possible application scenario. Generally, a crowd counting
application will be evaluated by the error α between estimated
crowd size γ and true crowd size θ at a certain point of time.
Therefore, such applications try to reduce α in:

θ = γ + α (1)

Whereas, γ is estimated by counting the number of WiFi-
enabled devices δ multiplied with a device distribution ratio
β. This ratio reflects the fact that people carry either single,
multiple or no detectable devices. As a result, γ is defined as:

γ = δ · β (2)

Usually, β is acquired through learning with ground-truth data
or representative surveys. As β belongs to the device-mapping
problem it will not be explored further in this work. Instead,
δ will be the key metric to assess data quality as it is strongly
affected by the fake devices and detection latency problems.
For instance, a device might use multiple randomized MAC
addresses which could be interpreted as multiple devices but
actually belong to a single device. These false devices are
defined as εrand and cause an overestimation of counted
devices as shown in Fig. 1. The detection latency problem
addresses errors with the timeliness of detection. Since packets
are only proof of presence for a single point of time, it might
be the case that a device has been present but not detected
yet. This causes an underestimation error of counted devices.
Likewise, a device may have already left the sensing area and
is still considered to be present resulting in an overestimation
error. Both of these timely estimation errors belong to the
detection latency problem and are defined as εlat. Assuming
that µ is the set of devices that are present and correctly
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Fig. 1: Visualization of Data Quality Metrics

detected and thus do not belong to εrand or εlat the estimated
number of devices δ can be defined as:

δ = µ+ εrand + εlat (3)

This data quality definition allows us to examine the impact
of each data quality improving method on different aspects of
device estimation. A problem occurs when using these data
quality metrics for an experiment over time as they hold only
for a single instance of interest. To solve this problem, we
extended the definition by averaging each metric resulting in:

δ = µ+ εrand + εlat (4)

At last, we additionally defined τ as the true amount of
WiFi-enabled devices in our experiments. This enables us to
calculate the overall accuracy of device estimation with the
Root Mean Square Error (RMSE) between δ and τ .

IV. NOVEL DETECTION METHODS

To overcome the challenges of MAC randomization and
low probe request frequency, new detection methods should
be considered. As a result, we present novel ways to detect
devices based on additional WiFi packets that are yet not
affected by privacy measures.

Control Frame Attack. Martin et al. [1] presented the Con-
trol Frame Attack for detection of devices with and without
active randomization. It is based on the idea that by sending
WiFi frames to the universal MAC one can elicit a broadcasted
response. This response is proof that the targeted device must
be present in the vicinity of the monitoring station. The only
requirement for this ping technique is the prior retrieval of
the target universal MAC. This is achieved by monitoring
probe requests which occasionally contain the universal MAC
of the device. This method would allow active scanning for
previously seen devices. As a result, the overestimation error
ω of device presence is reduced because no more responses
will be monitored after the device has left the area.

According to Martin et al. [1] this attack can be carried out
by targeting devices with Request-To-Send (RTS) frames and
listening to corresponding Clear-To-Send (CTS) responses.
The RTS/CTS technique as specified by the IEEE 802.11 [9]
was initially designed to reduce possible collision of WiFi
frames (the so-called Hidden Node Problem). This occurs
when two nodes communicate with an AP in their range but
are too far away to sense the presence of the other node.

In order to avoid transmission collisions, each node may
request with an RTS message a transmission permit from
the AP. The AP can grant this permit by responding with a
CTS frame. Both RTS and CTS frames contain a target MAC
Address which can be used to detect the presence of devices
similar to probe requests. Interestingly, RTS messages can also
be sent to nodes or mobile devices in general to induce a CTS
response. Devices can be tricked into revealing themselves by
creating an RTS frame that contains the target device MAC
as source and destination. In theory, a device should respond
to that RTS frame with a CTS frame containing the device’s
own universal MAC as destination field. By monitoring these
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Fig. 2: RTS/CTS Device Scan

CTS messages the presence of a previously targeted device is
proven despite active MAC randomization. An overview of this
approach is shown in Fig. 2. We tested this approach with three
different randomizing devices Motorola 5s+, IPhone SE and
LG Nexus 5X using the packet sniffing and crafting libraries
Scapy and Libtins as proposed by Martin et al. [1]. They
confirmed the attack to be 100% successful independent from
association state to a WiFi network without giving a definition
for success. We define this success with their proposed attack
purpose which is to ”elicit a specific response from them at any
time if they are within wireless range” [1, p. 15]. Regarding
this definition, we have to conclude that the attack does not
work as devices will not respond at any time but only under
certain conditions. We conducted our tests for this attack at
different places like the university laboratory and private living
spaces where other WiFi networks were present.

We observed during our tests that a device only responds to
RTS messages targetting its MAC upon sending out a probe
request with that MAC. As a result, an RTS targetting the
universal MAC is ignored when the device sends out a probe
request with a randomized MAC. Interestingly, the device will
answer RTS targetting the randomized MAC. We conclude
from this behavior that the randomized MAC overwrites the
universal MAC in the Network Interface Controller (NIC) for
a short time, thus ignoring RTS targetting the universal MAC
even during active probing.

Aside from these technical limitations, this approach may
interfere with privacy protection regulations as MAC addresses
have to be stored and sent out again. I.e., under the new
European data regulation law [12] it seems unlikely that we
can use previously seen MAC addresses in such an unintended
way.

Protective Mode Monitoring. Protective Mode Monitoring
is a new method for detection of devices that are associated
with an AP by monitoring additional frames besides probe
requests. We can detect devices that have a very low probing
frequency or do not probe at all. During our experiments, we
tried to find packets other than probe requests to detect device
presence. To our surprise, we were able to see frequently
RTS/CTS and acknowledgment (ACK) frames containing the
universal MAC of devices. In order to elaborate why these
frames were sent only in certain locations we checked if there

were different compositions of available WiFi networks. We
identified the coexistence of networks with different 802.11
WiFi standards as a trigger condition for the exchange of
RTS/CTS and ACK messages.

The IEEE 802.11 norm evolved to different development
standards a/b/h/g/n/ac [9]. The latest release was the ac stan-
dard in 2013 with the goal of providing high-throughput rates
on the 5 GHz band and is therefore also known as Very
High Throughput (VHT) mode. In contrast, older standards
are described as High Throughput (HT) modes. During our
experiments, we noticed that the vast majority of WiFi net-
works in our university and different public spaces belong
to the HT mode type. We explain this distribution with
the lack of demand for VHT mode and the resulting slow
adoption of supporting routers. Without going further into
detail on the fundamental differences between HT and VHT
transmissions, it should be noted that a router with VHT mode
can not process HT transmissions. To prevent issues with data
frame transmissions in mixed environments with VHT and HT
networks, devices can be prompted to operate in a so-called
protected mode. By setting protection fields in probe responses
and beacon frames, a VHT access point announces its presence
and triggers the protected mode in nearby associated devices if
an HT AP is also present. Upon operating in protected mode,
an AP or device will use an RTS-CTS-ACK handshake for
data transmissions as depicted in Fig. 3.

Device  AP 

RTS 

CTS 

DATA 

ACK 

Monitor 

Fig. 3: RTS/CTS/ACK Handshake Initiated by Device

During our experiments, we observed that this handshake
can be initiated by both parties. As a result, the device MAC
will always appear in either the source or destination of an
RTS message. Since CTS and ACK messages have only a
destination MAC, the device MAC will only appear in them
if the device initiated the handshake. Although CTS and ACK
messages can also be used for device detection, we found
the frequency of RTS messages enough for real-time location
tracking purposes which also saves packet processing overhead
on the application side.

To use this detection method, a monitoring application must
assure that the conditions for protected mode are fulfilled. We
achieved this by setting up an 802.11ac (VHT) network in
an environment where 802.11 a/b/g/n (HT) networks already
exist. Likewise, an HT network must be created if only
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VHT networks are present. Since APs advertise their presence
with beacons and probe responses it should be also possible
to simulate such networks using only crafted WiFi frames.
This would allow triggering the protected mode and detection
of devices associated with third-party networks without the
installation of additional hardware. Finally, this method of
detection cannot be countered with techniques like MAC
randomization as the RTS/CTS handshake only works with
the true device MAC. Furthermore, in an associated state,
no MAC randomization is employed due to possible WiFi
communication problems in general. The only option would
be to disable the protection mode by the manufacturer which
seems unlikely since it is defined in the 802.11 standard itself.

V. EVALUATION

The goal of our evaluation was to show how the quality
of device counting with probe requests is affected by MAC
randomization and varying probing frequency. We used a
controlled setting with a limited amount of devices to highlight
how a small subset of devices can influence the estimation
accuracy. In contrast to other works, we specifically focus on
four different scenarios which are dependent on the deploy-
ment environment and strongly impact the estimation process
but are often overlooked.

Experimental Design. The scenario metrics are the WiFi
association states of mobile devices and whether the carrier
interacts with a device as shown in Table I. These four different
scenarios systematically cover the main contexts of devices.
We simulated device usage by unlocking the screen every 5
minutes for 30 seconds and opening an app. For example in
Scenario 1, the user interacts with the device regularly and the
device is associated with a present WiFi.

To examine the impact of different probing frequencies and
MAC randomization we evaluated the detection accuracy in
a 40 minutes experiment with our devices. Entry and leave
events of devices were simulated by adding and removing
two devices every 5 minutes to the monitoring area. The
experiment was initiated with zero devices. Then, devices were
iteratively added until all devices were present. After the entry
phase, devices were again repetitively removed. This approach
allows us to examine the different errors regarding device over-
and underestimation εlat and randomization error εrand. The
overall detection accuracy was measured as RMSE between
the true and estimated number of devices.

Results. As a first step, we analyzed the variation of
probing frequency for each scenario to highlight the impact of
association state and user interaction on probing behavior. As
presented in Fig. 4a, Scenario 1 had the least probes per hour
as devices tend to probe less without interaction and during an
associated state. The impact of the association state is high-
lighted by the plot for Scenario 2 as user interaction remains
the same and association state is changed to unassociated.

In Scenario 3, the probing frequency is similar to that of
Scenario 2 as user interaction increases probing frequency and
the associated state reduces it. Generally speaking, association
state and user interaction can either boost or decrease probing
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Fig. 5: Device Detection Experiments

frequency. As a result, the probing frequency in Scenario 4 is
the highest due to the increasing effect of user interaction and
devices being in an unassociated state. From these results, we
infer that the detection of single devices and their carriers is
strongly dependent on their environmental context.

Next, we present the magnitude of randomizing MAC in
Fig. 4b which shows that devices can create a large set of
unique MAC. In order to minimize the error εrand which
represents randomized MAC in the data quality definition this
would require either filtering or further processing of such
MAC. As there exist no state-of-the-art approaches that are
capable of identifying randomized MAC in the first place, it
is unclear how they can precisely filtered or processed. Fig.
4b shows only Scenario 2 and 4 as devices in an associated
state did not produce any randomized MAC. Interestingly, user
interaction significantly increased the number of randomized
MAC. We assume that devices interpret user activity as an
indicator for a possible change of location and thus need to
probe more often for new networks.

In Table I and II, we present the data quality (DQ) metrics
for all scenarios using either probe requests or the CTS/RTS
based approach for device detection. Please note that protective
mode monitoring only works for devices in an associated state
and is therefore only applied in Scenario 1 and 3. Additionally,
in Fig. 5 we provide the device estimation for all scenarios.

In Scenario 1 the number of devices was constantly underes-
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timated as the decreased probing frequency reduces the overall
detection accuracy. Not only are some devices never seen but
also late detected or it is falsely assumed that they have left
after the chosen leave timeout of 5 minutes. Increasing the
leave timeout will lead to overestimation and increase error
further in environments with different scenario types. In con-
trast, using additional frames in the improved method results in
a far better device estimation. The RMSE was reduced by 35%
using the CTS/RTS approach due to the increase in correct
detected devices µ from 2.3 to 7.1. The detection latency error
εlat was also reduced by 87% from 5.47 to 0.93 as devices
could be detected in a more timely manner. The metric εrand
was zero for both approaches devices do not use randomization
in an associated state. Compared to the results of Scenario 3,
the metrics slightly improve for both approaches solely due to
the increased probe frequency. Especially, the probe request
approach benefits much more from increased packet frequency
as RTS/CTS message frequency is already high enough even
without user interaction.

The data quality metrics for Scenario 2 and 4 highlight the
issues with MAC randomization as εrand clearly outweighs
εlat. Although correct device detection µ is with 5.27 for
Scenario 2 and 5.88 for Scenario 4 higher than for all other
scenarios, the RMSE is significantly increased because of
εrand. The simulation of user interaction had the biggest
impact on the RMSE in Scenario 4. This can be explained
by the additional randomized probe requests that are sent out
upon screen unlock resulting in a higher randomized probe
frequency and εrand compared to Scenario 2.

VI. CONCLUSION & FUTURE WORK

We have shown that the data quality of device detection
is highly reliant on the context of crowd counting envi-
ronment. In scenarios where devices are connected to WiFi
infrastructures, like universities and shopping malls it is more
difficult to detect devices unless our proposed protected mode
monitoring method (PMM) is used. Likewise, the absence of
WiFi structures leads to more devices in an unassociated state
increasing the probing frequency but also creating a lot of
noise due to randomized probe requests. As PMM does not
work in unassociated state, crowd counting systems can only
rely on probe requests and need to take care of randomized

TABLE I: DQ Metrics for Probe Request Monitoring

scenario WiFi state usage RMSE µ εrand εlat
1 associated no 3.43 2.3 0 5.47
2 unassociated no 7.39 5.27 13.4 1.97
3 associated yes 2.25 4.12 0 3.4
4 unassociated yes 12.52 5.88 18.58 1.6

TABLE II: DQ Metrics for Protective Mode Monitoring

scenario WiFi state usage RMSE µ εrand εlat
1 associated no 1.23 7.1 0 0.93
3 associated yes 0.94 7.32 0 0.86

MAC addresses. Although the RTS/CTS attack did not work
as intended it shows that there are ways to actively search for
devices by taking advantage of 802.11 protocols.

Regarding data quality, we hope to see a clearer focus
on the different scenarios in crowd counting and device
detection. Our presented data quality metrics and scenario
types allow a clear comparison regarding the effectiveness of
different methods and approaches. Additionally, the metrics
can be extended to reflect additional factors that not have been
considered yet. We strongly believe that WiFi crowd counting
requires such metrics to assess error sources and find proper
detection methods. After all, only if you know thy quality you
may be able to find appropriate strategies.
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