
NN-SAR: A Neural Network Approach for Spatial
AutoRegression

Pranita Dewan, Raghu Ganti, Mudhakar Srivatsa
IBM T.J Watson Research Center

Email: {dewanp, rganti, msrivats}@us.ibm.com

Sebastian Stein
University of Southampton
Email: ss2@ecs.soton.ac.uk

Abstract—Geographic phenomena such as weather, pollution,
pollen are increasingly monitored through deployments of wide-
area networked sensors. However, the coverage of these sensors is
limited to key densely populated regions. A standard approach to
inferring missing spatial and temporal values is to use regression.
In this paper, we present a new approach, NN-SAR, to inferring
spatiotemporal values from existing deployed sensors. We model
this inference problem as that of learning a spatial representation
of the underlying phenomena from the existing data and use deep
learning based auto-encoder approach. Classical auto-encoders
learn on image or singular time series data without taking
“spatial” similarities into account. We present a novel mechanism
for encoding the spatially distributed sensor readings as “images”
and apply the auto-encoder with convolutional layers to learn an
efficient representation of the data, which can then be used to
infer missing sensor data. Preliminary results indicate that the
performance of our approach is far superior to the state-of-the-
art Spatial Auto-Regressive (SAR) models by 20% on average.

I. INTRODUCTION

Spatiotemporal phenomena such as weather, pollen, air
pollution levels are increasingly measured through large scale
deployments (e.g., weather stations, fine particulate matter
sensors). Most of these deployments are targeted to densely
populated regions, where it is easy for sensors to be installed,
configured, and wired to the Internet. However, nearby regions
that are unmonitored by these installations lack measurements.
Unlike other localized and indoor phenomena, wide area
geographic phenomena can be estimated in regions lacking
measurements using statistical and mathematical models [1]–
[4]. In this paper, we propose a novel neural network based
modeling approach for estimating spatiotemporal phenomena.
We show that our approach performs better than standard
spatial auto-regresssive models when enough data is provided
for the neural network approach.

A standard and state of the art technique for estimating miss-
ing values in spatiotemporal measurements is called Spatial
AutoRegression (SAR) [5], [6]. A SAR model predicts a con-
tinuous outcome variable (e.g., weather conditions, incidence
of disease, pollution levels) based on input variables (e.g.,
cloud cover, number of vehicles). One can think of SAR as
linear regression applied in the spatial domain, by allowing for
the outcomes to be affected by outcomes, covariates, and errors
in nearby areas. We provide a further explanation of SAR mod-
els in later parts of the paper. However, a challenge with SAR
models is that they are only as good as the choice of the input
variables. In theory, if all the variables are chosen accurately,

Fig. 1: OK Labs PM sensor map

SAR models can achieve optimal prediction accuracy. To
address this drawback of SAR models, we decided to explore
a data driven approach to modeling spatiotemporal phenom-
ena. We observe that as more and more data is collected,
through long term and denser deployments, applying a data
driven approach for modeling, such as neural networks, can
provide us significantly better results than traditional modeling
approaches, such as SAR. Neural networks have become quite
popular in the last five years [7]–[9], their applications range
from image classification, video analysis, language translation,
to medical imaging [10]–[15]. There are two broad ways in
which neural networks can be used, one is to learn models
for classification tasks and the other is to learn models for
prediction tasks. Our interest is in prediction that captures
spatiotemporal characteristics. Specifically, we believe that the
choice of a Convolutional AutoEncoder (CAE) is appropriate
in this scenario. To illustrate this, let us consider a satellite
view (or bird’s eye view) of the phenomena, the observed
measurements are points on a snapshot of the satellite view.
If we were to grid the entire image (using a typical spatial
grid), then some of the cells have observations and some of
them do not. The goal of the neural network then is to be
able to learn a compact representation of the spatiotemporal
phenomenon so that it can be used to predict any missing
spatial and temporal values. Hence, the choice of a CAE,
where convolutions capture the spatial dependencies and the
auto-encoder extracts generic features and learns the key input
variables. The main advantage of such data driven model

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 783

learning is that the input variables do not need to be explicitly
modeled, with such dependencies being learned through the
observations themselves. In this paper, we show that such an
approach is superior to the traditional modeling approaches
using real sensor data collected over a large spatial region
(a country) and time range (about a month). The sensors
monitor particulate matter, PM2.5 and PM10 [16], which are
standards used to monitor air pollution levels. The approach
that we developed can be easily transferable to model other
spatiotemporal phenomena as well, as the input variables are
not explicitly captured. Our technique, provided enough data,
provides on average 20% higher accuracy than the traditional
SAR approaches.

II. PROBLEM AND DATASET DESCRIPTION

Particulate Matter (PM) refers to microscopic solid or liquid
matter suspended in the atmosphere of Earth and is typically
classified as a pollutant. Depending on their size, the particles
either fall into the PM10 category, which includes coarser
particles that are generally 10 micrometers or less or the PM2.5

category, which includes fine inhalable particles with diameter
less than 2.5 micrometers. These pollutants can have adverse
effects on the climate as well as human heath, including
respiratory diseases and heart issues, given their microscopic
size.

Due to these concerns, it is extremely important to be able to
always monitor the level of these pollutants in the atmosphere
and take the necessary steps to reduce them when they start ex-
ceeding the acceptable thresholds. There are large scale efforts
to address these problems in the form of deploying sensors
that can calibrate the atmospheric particulate matter content,
but since this is a continuous ongoing process, the coverage
is of course restricted to areas that have a functioning sensor.
Since atmospheric particulate matter at a particular location is
spatially correlated with that at the neighboring locations, we
can use models that capture spatial interactions, such as Spatial
Autoregression (SAR) or Convolutional Networks (CNNs) to
predict and approximate PM quantities at the locations that
do not have sensors to measure these pollutants. While there
is an abundance of past work in this area using SAR or
other statistical models for prediction [17]–[19], more recently
neural network based approaches have also been proposed
[20]–[23]. A key difference of our work in this paper compared
to other neural network based approaches, is that none of them
use convolutional layers to model spatial dependencies.

The dataset that we used in this paper comes from the Open
Knowledge Labs [24]. The data is collected from volunteer
deployed sensors that can collect air quality data by tracking
various metrics such as fine dust matter, temperature and
humidity. Figure 1 shows the spatial spread of one day’s worth
of data from the PM10 sensors in the country of Germany.
While the dataset consists of data from all over the world, the
maximum number of sensors and hence most of the collected
data is from European countries. In this paper, we will focus
on training and scoring our models with both PM10 and
PM2.5 quantities, in desired spatial locations, given a partial

spatial measurement of these metrics, using SAR (section
III-A) as well as a Convolutional Auto-encoder (CAE) network
approach (section III-B) as mentioned in section I.

III. APPROACH

In this section, we describe in detail the techniques that we
used to solve the problem introduced in the previous section.
We first provide an overview of spatial autoregression and
its application to the current problem. We then describe the
deep neural network approach, including feature extraction and
representation for data features to be used with this approach,
followed by a description of the architecture of the deep
learning pipeline itself.

A. Spatial Autoregression

Spatial Autoregressive (SAR) models have been tradition-
ally used to model spatial dependencies among data obser-
vations in various domains, including income, crime rates,
population, housing prices, etc. The SAR model is represented
as follows:

y = ρWy +Xβ + ε (1)

where y is an n by 1 vector representing the dependent
variable and ρ is a scalar coefficient that represents the
strength of spatial dependence, with W representing an n
by n spatial weight matrix which quantifies the connections
between spatial regions. W is usually defined prior to the
regression analysis and is often dependent on the application.
X is an n by k matrix representing the observed explanatory
variables and β is a k by 1 vector representing the regression
parameters for the model. ε is an error term that follows
a multivariate normal distribution, with zero mean and a
constant scalar diagonal variance-covariance matrix σ2In. The
regression parameters can be estimated using techniques such
as maximum likelihood estimation.

In our application of SAR to the current problem, we first
create a spatial grid of the area for which we aim to train
a SAR model. The grid is obtained using the technique of
geohashing [25]. Data for each cell in the grid is obtained
using either the available PM sensor values or through an
expanding radius grid neighborhood based bilinear interpola-
tion when we have missing values. We also take into account
multiple historical values of y when performing the regression
analysis. We experimented with different history lag values
and present the results in our evaluation. We generally restrict
W to assign weightage to only the immediate neighbor values,
since increasing the neighborhood radius did not seem to be
particularly helpful for predicting PM values as seen in our
evaluation. We trained and applied SAR towards predicting
both PM2.5 and PM10 using data from Germany. The results
of this exercise are described in section IV.

B. Convolutional Auto-Encoder

A primary drawback of the SAR model described in the
previous section is that the spatial weight matrix, W , has
to be defined by domain experts and the task can become
increasingly difficult as the size and the spread of the available

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

784

(a) Data Image (first 3 channels) (b) Label Image

Fig. 2: Data and Label Images used for the Convolutional
Autoencoder

data increases. A SAR model can also be represented as a
power series expansion of the form, under the condition that
||ρW || < 1:

y =
∞∑
i=0

ρiW i(βX + ε) (2)

The above equation can be interpreted as learning y through
the summation of increasing powers of W . In other words, we
learn the effect of spatial interactions at increasingly coarser
spatial neighborhood sizes. This learning can be simulated
as a series of convolutional filters of varying sizes. This
equivalence motivated us to use convolutional auto-encoder
networks as a technique to implicitly learn the value of W
from the available data rather than manually defining it, as is
the case with a SAR based model. We first provide an overview
of the data transformation and feature extraction steps that
are necessary to represent the data in a form that can be
consumed by a convolutional auto-encoder. We then describe
the high level architecture of the network and the variants that
we explored.

1) Feature Extraction and Representation: Since we intend
to use a convolutional auto-encoder network to model and
predict PM spatial dependencies, a necessary prerequisite for
this approach is to be able to represent the PM data in the form
of images. We create two images for each example instance
to be used with the convolutional auto-encoder network, (i) an
input data image and (ii) a target label image. To encode PM
information in the form of images, we use geohashing to create
a rectangular grid of all locations within the geographical area
under consideration. This helps us to preserve spatial locality
while encoding the desired information in the form of an
image. Every pixel in an image represents the PM information
in a particular geohash. The precision of the geohash (area
represented by a single geohash) and the geographic area to be
modeled determines the size of data and label images. While
the height and width of both, the data and the label image is
assured to be the same, the number of channels in them differ.

A label image encodes the expected PM value in a particular
location to the pixel that represents its geohashed value. Since
this is a single expected value at a given time instance, a
single channel is sufficient to represent this information. So,
typically a label image will contain only a single channel. The
data image represents the variables that an expected value in a
label image depends on. In our current application, the number
of channels in a data image is generally equal to the number
of historical values that we use to predict the next value. This
means that while the data image encodes PM values in the
same way as the label image, it stores more than one value
per location or geohash. Specifically, it encodes k values if
we deem that the values at the last k time steps are important
factors in predicting the next value. Hence, this gives us an
image with k channels, one for each of the time steps. Figure
2 shows an example of data and label images that encode PM
values using the technique described above. The dimensions
of the data image are 11x8x5, whereas the dimensions of the
label image are 11x8x1. For representation purposes, the data
image shows only the first three of the five channels.

2) Deep Learning Pipeline: The architecture of the deep
learning pipeline is shown in figure 3. The high level archi-
tecture consists of an encoder, which includes a number of
interleaved convolutional and max pool layers, with ReLU
(Rectifier Linear Unit) activations to obtain a compressed
encoding of the original data image, and a decoder which
includes the same number of convolutional layers as that
of the encoder, in addition to deconvolutional layers. The
decoder translates the compressed representation to the desired
label image, which contains the target PM values. In addition,
the network also includes skip connections from the encoder
feature maps to the decoder feature maps to provide additional
context that might have been lost in the encoding process, to
the reconstruction process. This architecture is inspired by the
U-Net architecture that is described in [26]

The convolutional auto-encoder was trained using the
stochastic gradient descent implementation from TensorFlow
[27], using a MSE (Mean Squared Error) loss function. We
experimented with different numbers of convolutional layers
and found 3 convolutional layers to provide the best perfor-
mance. In addition, we also augmented our original image
dataset to improve the performance further. Since the source
and the target of our deep learning pipeline are images, we can
apply traditional image augmentation techniques to increase
the size of our dataset and make our network more robust
and performant. We used a number of techniques to augment
the original dataset, including mirroring, flipping and rotation.
Since the images were not too large to begin with, we did not
use any cropping. The convolutional auto-encoder models that
we trained and evaluated with consist of variants with different
numbers of convolutional layers as well as with and without
data augmentation. We provide a detailed comparison of all
these model variants in our evaluation in section IV

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

785

Fig. 3: Deep Convolutional Auto-encoder Pipeline Architecture

Fig. 4: Training Time Fig. 5: PM10 Prediction Error Fig. 6: PM2.5 Prediction Error

IV. EVALUATION

In this section, we describe the experiments that we con-
ducted to evaluate the performance of various approaches
described in the previous section. As mentioned previously,
we used particulate matter (PM10 and PM2.5) data from Open
Knowledge Labs. Our SAR model used a Java based imple-
mentation and all SAR experiments were run on a machine
with 16 GB RAM, 8-cores (2.5 GHz each). All deep learning
models were implemented in Python with TensorFlow and
experiments were run on a machine with 64 GB RAM, 2-
cores and 2 NVIDIA Tesla K40 GPUs.

We primarily used PM data from Germany for the month
of September, 2018, for the evaluation presented in this paper.
Specifically, we picked all sensor locations that are within
a radius of 200 km from Frankfurt, Germany. We created a
geohash grid for our SAR model and obtained images from
the geohash grid for the deep learning based models, with a
∼50 km granularity for each geohash in the grid. Sensors were
available for 80% of the grid locations. The missing data (20%
of the grid locations) was obtained through interpolation, as
mentioned in section III-A. We preprocessed the data obtained
from all sensors to align them and windowed and averaged the

data into 15 minute intervals, which gives us 96 samples (or
images) per day. By evaluating on dense spatial (almost all of
Germany) and temporal (a month) data, we can ensure that
our models can capture a wide range of PM values. All the
models were evaluated with a random 80-20 train-test split.

For most of the experiments, the history size for the data
features was fixed to be 5, meaning we considered data from
past five time steps (windows) to predict PM values for the
next time step for each of the locations in the grid. The neigh-
borhood size for the SAR based model was typically fixed
to be 1, meaning PM quantities at a particular location are
only influenced by the PM values at its immediately adjoining
locations in the grid. This means that for every location in
the grid, historical values of its eight immediate neighbors,
including the historical values in the current location are used
as features to train all of our models. We also conducted
experiments to measure the effects of other history sizes when
training our models and effects of a larger neighborhood when
training SAR models.

In our results, we refer to the convolutional auto-encoder
models as ‘CAE’, with a model consisting of three con-
volutional layers represented as ‘CAE-3C’, while a model

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

786

consisting of two convolutional layers is represented as ‘CAE-
2C’. We also include the three layer convolutional auto-
encoder model that was trained with the augmented dataset
and this is represented by ‘Aug CAE-3C’. The size of the
augmented dataset is 4x the size of the original un-augmented
dataset. All CAE models were trained for 120 epochs, with a
learning rate of 10−4.

We first measure the time required to train each of our
models, for data points from different number of days, ranging
from 5 to 30 days. The results are shown in figure 4, with
x-axis representing the size of training data and y-axis repre-
senting the ln(training time). The SAR model has the fastest
training time, followed by the CAE-2C and CAE-3C, with Aug
CAE-3C taking the longest time to train. Deep neural network
techniques usually take longer times to train when compared
to linear regression techniques such as SAR, given that the
number of variables through all the layers that they model is
much larger. CAE-3C takes longer than CAE-2C given the
additional number of convolutional layers. Aug CAE-3C has
the longest training time since the size of the training dataset
that it operates with is about four times that of the other
models.

To compare model quality, we measure prediction error
for each of our trained models. Figures 5 and 6 show the
prediction error for all four models for predicting PM10 and
PM2.5 respectively. We use RMSE (Root Mean Squared Error)
as the error metric. As seen from figure 5, for predicting
PM10 values, the SAR model performs best when the dataset
sizes are relatively smaller. At some crossover point, as the
training data size increases, the CAE models generally start
to perform better than SAR. Amongst the three CAE variants,
Aug CAE-3C shows the best performance. This is in line with
the data hungry nature of deep learning models. Since Aug
CAE-3C has the largest training dataset of all the models, the
network parameters are tuned more finely and hence show
better prediction performance. The crossover point for Aug
CAE-3C is around 22 days worth of data versus the crossover
point for the other two CAE based models is around 27 days
worth of data. While the SAR model shows about 37% better
performance than the best CAE model for smaller data sizes
(5 days worth of data), for larger data sizes (30 days worth
of data), Aug CAE-3C shows an improvement of about 32%
over the SAR model.

Figure 6 shows a similar comparison for predicting PM2.5

values. Aug CAE-3C model is able to do a much better job in
predicting PM2.5 values across all data sizes, when compared
to all other models, even though the error decreases or remains
constant before increasing with larger data sizes. One reason
for this could be that the variation in PM2.5 values is typically
higher than that for PM10 values. This is observed in figure
7. The larger dataset size in case of Aug CAE-3C helps
to make it more performant than the other models in face
of data variability. CAE-2C and CAE-3C show very similar
performance across all data sizes and while they are slightly
worse than SAR for smaller data sizes, they start showing a
small prediction improvement over SAR for larger data sizes.

This is again likely due to high data variability and insufficient
training data and hence the number of convolutional layers do
not seem to make a marked difference. Aug CAE-3C shows
between 21 and 34% improvement when compared to SAR.

Next, we aim to look at a high level data distribution of
the test dataset for both PM10 and PM2.5 to get a more
granular view of how well the different models capture the real
distribution. We used 30 days worth of PM10 and PM2.5 data
for this experiment. Figure 7(a) shows the real distribution,
distribution of the predicted values using SAR model and the
distribution of the predicted values using the CAE2 model
(without augmentation) of PM10 values. The values in all
the distributions are clipped to 100 for visualization purposes
(since while the distribution tail could be long, there are very
few values in those buckets). The distribution of predicted
values for both SAR and CAE look similar to the real values,
on a high level. Both the models sometimes predict negative
values even though real PM values can never be negative.
A similar distribution for PM2.5 values is shown in figure
7(b). Predictions from both the models seem to have subtle
differences when compared to the real values. For smaller
values, the SAR distribution seems closer to the real values,
the CAE distribution seems closer to the real distribution for
somewhat higher values but tends to also overestimate larger
PM values, as seen by the smoother tail end when compared
to the real values. Both SAR and CAE models show some
variability and spillover in subsequent bins when compared to
the real values. Finally, we experiment with different history
sizes to be used when training our models and different
neighborhood sizes in the case of SAR. It should be noted that
we used convolutional filters of a fixed 3x3 size when training
our CAE based models and did not experiment with this
parameter for experiments in this paper, given the fairly small
image sizes. Figure 8 shows the results of these experiments.
Figure 8(a) shows the effect of features of varying history
size (number of time steps). We tried history sizes of 1, 2, 5,
8 and 10. We chose to use 10 days worth of PM2.5 data for
this experiment and compare the prediction performance by
measuring RMSE for SAR and CAE-3C, since it is generally
the best performing deep learning model amongst all the
variants that we tried. It is interesting to note that increasing
the history size generally seems to benefit the SAR model
whereas with the CAE based model, the performance improves
with increasing history size but only until a certain history
size. Increasing the history size beyond a particular point
tends to hurt the model performance. Increasing history size
in case of the CAE model implies an increase in the feature
dimensionality i.e. the number of channels in the data image.
This leads to an increase the amount of hidden variables
the deep learning model has to learn and might explain the
increasing error when the amount of training data is unable
to keep up with the number of variables. Next, we measure
the effect of varying the neighborhood size to be considered
when training the SAR model. We measure the prediction error
for both PM2.5 and PM10 with neighbor sizes of 1 through
5. A neighbor size of n implies that we consider a total of

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

787

(a) (b)

Fig. 7: PM10 and PM2.5 histograms - Real, Predicted with SAR model and Predicted with Convolutional Autoencoder model

(a) PM2.5 RMSE with different his-
tory sizes

(b) SAR prediction error with differ-
ent neighbor sizes

Fig. 8: Effect of different history sizes in training SAR and
CAE and effect of different neighbor sizes in training SAR

(2∗n+1)2 location features for the current location, including
itself. Varying the neighborhood size does not seem to have
any significant effect for predicting either PM2.5 and PM10

and in fact, seems to deteriorate the performance when the
neighborhood size increases beyond a certain value, at least
in the case of the current application. It is conceivable that
phenomena that have a larger spatial spread could benefit more
by leveraging features from a larger neighborhood size.

V. DISCUSSION AND FUTURE WORK

In this paper, we introduced the problem of modeling
and predicting particulate matter data and compared various
approaches towards solving it, including the traditionally used
Spatial Auto-regression model as well as a deep convolutional
auto-encoder approach by converting the data into image
features and labels. We compared prediction performance as
well as training times across all the models, including SAR
and multiple variants of the convolutional auto-encoder model.
Based on the results, it is apparent that larger data sizes favor
the deep learning based approaches and might be a good
investment in terms of training time and resources when a large
amount of historical data is available. In addition, CAE models
can learn parameters such as the spatial weight matrix, W ,
that would otherwise need to be carefully defined by domain

experts. SAR models train much faster and are more suitable
when the training dataset is relatively small. With a limited
amount of data, increasing the history size of the features
used for training benefit a SAR approach, whereas increasing
the history size beyond a certain value is not suited to deep
learning models, when the training dataset is not too large. As
part of our future work, we would like to experiment more with
network parameters for the deep learning approaches. Since
the size (height and width dimensions) of our images was
relatively small, we could not try out larger sized convolutional
filters or add more layers. By either increasing the spatial
area that we consider or increasing the precision of our
geohashing technique to create the grid, we can obtain a
larger sized image to try out these tweaks and observe the
effects they might have on prediction performance. While we
did not observe any benefit in increasing neighborhood size
for SAR models in our current experiments, it might also
be interesting to measure neighborhood size effects when we
have a larger spatial grid. Some of the tweaks for the deep
learning techniques mentioned above would also require larger
training dataset sizes to show any significant benefits. While
we did see a performance penalty with an increase in history
size for the auto-encoder approach, increasing the training
dataset size could also offset this effect since more training
examples would help in better learning the additional network
parameters.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

788

REFERENCES

[1] M. Brauer, G. Hoek, P. van Vliet, K. Meliefste, P. Fischer, U. Gehring,
J. Heinrich, J. Cyrys, T. Bellander, M. Lewne et al., “Estimating long-
term average particulate air pollution concentrations: application of
traffic indicators and geographic information systems,” Epidemiology,
2003.

[2] L. Anselin, J. Cohen, D. Cook, W. Gorr, and G. Tita, “Spatial analyses
of crime,” Criminal justice, vol. 4, 2000.

[3] J. K. Ord and A. Getis, “Local spatial autocorrelation statistics: dis-
tributional issues and an application,” Geographical analysis, vol. 27,
1995.

[4] C. Elbers, J. O. Lanjouw, and P. Lanjouw, “Micro–level estimation of
poverty and inequality,” Econometrica, vol. 71, 2003.

[5] L. Anselin, Spatial econometrics: methods and models. Springer
Science & Business Media, 2013, vol. 4.

[6] H. H. Kelejian and I. R. Prucha, “A generalized spatial two-stage least
squares procedure for estimating a spatial autoregressive model with
autoregressive disturbances,” The Journal of Real Estate Finance and
Economics, vol. 17, 1998.

[7] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural computation, vol. 18, 2006.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, 2006.

[9] N. Le Roux and Y. Bengio, “Representational power of restricted
boltzmann machines and deep belief networks,” Neural computation,
vol. 20, 2008.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012.

[11] N. Wang and D.-Y. Yeung, “Learning a deep compact image representa-
tion for visual tracking,” in Advances in neural information processing
systems, 2013.

[12] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-
ing of video representations using lstms,” in International conference on
machine learning, 2015.

[13] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[14] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015.

[15] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez,
“A survey on deep learning in medical image analysis,” Medical image
analysis, vol. 42, 2017.

[16] “EPA PM Basics,” https://www.epa.gov/pm-pollution/particulate-matter-
pm-basics.

[17] P. S. Kanaroglou, M. D. Adams, P. F. De Luca, D. Corr, and N. Sohel,
“Estimation of sulfur dioxide air pollution concentrations with a spatial
autoregressive model,” Atmospheric Environment, vol. 79, 2013.

[18] M. Cameletti, F. Lindgren, D. Simpson, and H. Rue, “Spatio-temporal
modeling of particulate matter concentration through the spde approach,”
AStA Advances in Statistical Analysis, vol. 97, 2013.

[19] R. Shad, M. S. Mesgari, A. Shad et al., “Predicting air pollution using
fuzzy genetic linear membership kriging in gis,” Computers, environment
and urban systems, vol. 33, 2009.

[20] P. Gupta and S. A. Christopher, “Particulate matter air quality assessment
using integrated surface, satellite, and meteorological products: 2. a neu-
ral network approach,” Journal of Geophysical Research: Atmospheres,
vol. 114, 2009.

[21] X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin, and J. Wang, “Artificial neural
networks forecasting of pm2. 5 pollution using air mass trajectory based
geographic model and wavelet transformation,” Atmospheric Environ-
ment, vol. 107, 2015.

[22] B. T. Ong, K. Sugiura, and K. Zettsu, “Dynamically pre-trained deep
recurrent neural networks using environmental monitoring data for
predicting pm2. 5,” Neural Computing and Applications, vol. 27, 2016.

[23] X. Li, L. Peng, Y. Hu, J. Shao, and T. Chi, “Deep learning architec-
ture for air quality predictions,” Environmental Science and Pollution
Research, vol. 23, 2016.

[24] “OK Labs Fine Dust Sensors,” https://luftdaten.info/en/home-en/.
[25] “G Niemeyer. Geohash,” https://en.wikipedia.org/wiki/Geohash.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

[27] “TensorFlow,” https://www.tensorflow.org/.

IQ2S'19 - 10th International Workshop on Information Quality and Quality of Service for Pervasive Computing

789

