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Abstract—We imagine drone service providers where one can
phone-a-drone to provide a service (e.g., rent a drone to check out
something, or for two minutes to take an interesting photo). There
are different types of drone services that can be implemented in
different scenarios. For example, a drone can act as a security
guard to protect someone walking home alone at night or a drone
can act as a flying camera that can be rented simply by calling the
drone to come to a given location to take photos or videos. This
paper aims to study the trade-off between maximising provider
revenue and maximising clients satisfaction in the context of
drone services, which we argue do not necessarily concur. We
have considered possible drone strategies and identified common
factors that may affect the decision-making process. The research
has implications for service providers - e.g., a service provider
should aim to address high rates of requests but not at the cost
of disappointing clients.

Index Terms—drone, UAV, drone services, on-drone decision-
making

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) or drones are on the
edge of delivering a superior level of services. The metropo-
lis project is developing a program to study the influence
of airspace structure on different functions for accommo-
dating more drones [1]. Other projects are developing Air
Traffic Management (ATM) systems such as SESAR and
NextGen [2]. This is indicative of the fact that there are
ongoing developments and modern infrastructures that are
preparing for the future of smart environments with drones.

On the drone side, work is being done on introducing
new properties that allow drones to be more self-aware and
autonomous [3], [4], [5]. In parallel, drones can be used to
conduct different types of tasks at wide-ranging locations. The
decision making in drones need to be designed in such a way
as to allow drones to make decisions on the go.

This requires, first of all identifying all the factors that go
into the decision-making, managing all the constraints, the ob-
jectives, and a hierarchical framework to deal with competing
objectives. Whilst the optimisation of drones decision making
is fairly well evolved [6], the optimisation of drones decision
making in the context of service delivery is not.

There are various aspects involved in the decision making
process. For example, drones could experience anomalies dur-
ing flight, such as, inner failure, changes in the environment,
or communication issues [3]. In dealing with such situations,
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decisions should be made real-time on the drone itself while
in flight, rather than from the station end.

In a previous study [7], we showed that a drone can process
tasks requiring no knowledge or intelligence as its been fully
controlled by the station centre. However, drones can be fully
or partially autonomous to perform tasks that are difficult for
a human pilot to perform.

In the context of drone service delivery, this paper inves-
tigates possible trade-offs between maximising revenue and
maximising clients satisfaction by exploring possible drone
strategies and identifying some common factors that may
affect the decision-making process. We also present some
results on how on-drone decision-making could affect the
profit gained and clients satisfaction.

II. THE CONCEPT OF ON-DRONE DECISION MAKING
A. Overview

The on-drone decision-making model presented here is to
explore different strategies and to address the impact of various
factors on the performance of drone services. Considering
that a drone receives orders directly from clients or indirectly
through a proxy (i.e., its station centre). Either way, once the
instructions are received, then the drone needs to act upon the
requests.

B. Drone

In our simulation, a drone act as a single independent agent
that is connected directly to the station-centre and indirectly to
clients. It has four main states: AtStation, OnRouteToClient,
ServingClient, and OnRouteToStation as shown in Figure 1.
Requests or instructions can be received by the drone at any
state. However, the drone has to then decide whether it can
take up a job upon receiving the request from the station-centre
or an individual station.

C. Client

In our simulation, we assumed that clients have a direct
connection to the station-centre. The behaviour of each client
is modelled by two states: Idle, where a client is not issuing
a request, and Requesting, where client issues a request based
on a predefined rate as shown in Figure 2.

Also, we have assumed the simulated service area where
clients are distributed to be a square with a side length of L.
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Stations can be located at the edge or anywhere within the
area [7]. Clients can be located in the area using different
distributions such as random, scatter-near, scatter-middle, and
scatter-far as shown in Figure 3, with station marked “x”.

Client satisfaction is a key measuring variable for service
provisioning. Longer waiting times are often associated with
relatively lower customer satisfaction. Figure 4 shows the
various scenarios and the associated client satisfaction levels.
The client satisfaction levels can range from disappointed to
neutral to satisfied, and depending upon the status of the
delivery and waiting time. No delivery and a long waiting
time are associated with dissatisfaction and delivery with a
short waiting time are associated with satisfaction. Clients are
satisfied if the waiting time is less than the satisfaction rate o
and neutral if the waiting time is less than double the time of
0. Other formulations of satisfaction can be explored but we
explore this formulation in this study.

III. EXPERIMENTATION
A. Overview

The process of determining which task a drone should serve
next involves considering a range of factors, constraints, and
the objective function. The objective of the task can vary
from seeking a particular value, e.g., minimisation of waiting
times, or maximisation of profits. This section presents various
factors involved in the decision-making process following
objective functions. It then presents our simulation for on-
drone decision making using the AnyLogic' simulation tool.
Our study simulates drones servicing clients with requests/-
tasks in simulated time corresponding to a (real-world) one

Thttps://www.anylogic.com
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hour period (so that the effects of battery life is temporarily
suppressed, for simplicity here, assuming one hour battery life
is not inconceivable for future drones) - we study the system
behaviour focusing on the number of served requests, total
revenue generated, measuring clients satisfaction, and the time
that the drone spends in each state.

B. Factors in choice of request to serve
Factors in decision-making in the context of drone services
delivery (for SC and/or drone) include:

o Power and battery life: Drones or stations need to
consider the available level of power (i.e., battery life
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left, consumption rate and charging rate if applicable) in
the context of the service. If the drone does not have
sufficient power to carry out the task then it would make
sense for the drone not to undertake that task. If a drone
accepts a task which it is not able to carry out fully, then
this could be counterproductive.

« Distance: The distance between the client and the station,
the distance between the client and the current drones
location, and the distance between the current drones
locations and the station are essential factors in making
decisions about drone service delivery.

« Financial incentive: The amount of value or financial
incentive associated with a particular service request can
determine the amount of resources allocated to a job
in the context of commercial jobs. For example, the
decision-making process can be driven by different rules
in cases of high value service requests, e.g. while on the
way to a client, a drone can decide to change its mind to
go after a higher value request.

o Range: The range in this context is not defined as the
distance that the drone is able to cover with the available
battery life, but maximum distance that the drone needs
to be away from its controller before it loses connectivity
with its controller. Whilst there is a lot of drones which
no longer need to be in the proximity of the controller,
there are still drones which needs to be within range of
their controllers [8]. In our simulated study, we assumed
that all drones are within the communication range of
their station.

« Data storage and processing capacity: Another impor-
tant factor in the drones decision making is the amount of
data storage and processing capacity that is required from
a particular task. Tasks which require more storage space
and processing capacity have to be matched against the
amount of storage that is available in the drone and its
processing capacity. If the hardware of the drone is not
capable of undertaking the task to the full extent, then as
described previously, it can be counterproductive to even
initiate the task. This can be significant when providing
drone data services.

« Environmental factors: Environmental factors can be
natural factors like temperature, pressure, visibility, and
humidity; or factors like no-fly zones. The drone can
detect environmental conditions through sensors it might
have or through data feeds from external sources. It is
important for the drone to consider the environmental
factors for a number of reasons, some of these are: to
prevent damage to itself, to ensure the quality of the
task that the drone has been assigned, and to ensure the
legality of the operation. In this study, we assumed that
drones operate with no environmental restrictions.

C. Objectives

There are lot of objectives that are possible for the drone
service providers. For the purposes of the experiment, we have
considered the following objectives:

o Maximising the number of served orders
e Maximising revenue

o Maximising clients satisfaction

e Minimising OnRouteToClient time

D. Strategy Implementation

We explore various on-drone strategies to enhance drone
services delivery. We have specified a study area with (L =
1000m), station located at the edge and clients distributed
using four different distributions as discussed earlier. The steps
in running the simulation are: 100 clients periodically sends
requests to the station at different average rates « (i.e 0.5, 0.7,
0.9) per hour. A drone has a speed of 10 m/s, a processing time
of v and a battery life of one hour. Once the drone receives the
request, it has to first decide whether it should queue the job
(based on the acquired strategy) or proceed to the client if there
are no orders on the queue. If a drone battery is insufficient,
the drone will no longer receive a request. As the simulator
time runs for an hour, in this study we assumed that a drone is
capable of handling the received request within the one hour
run time.

In this experiment, we study the effect of two main factors:
distance (i.e. between the drone and the client) and value (fi-
nancial incentive) in building the drones strategies for handling
the upcoming requests. Each order has a value (v) (between
10 to 100) and a determined distance (d) between the current
drone location and the requesting client. Each client is located
at a position U and the drone’s current position is denoted as
Q. For the experiments, we have assumed that the satisfaction
threshold is (0 = 100) seconds. Each order/request (1) belongs
to the order set R, it is safe to say that » € R. Then we can
calculate the the value v(r) as the value of the requested order
and the distance as d(r) = /(U; — Q)2 + (0, — Q)2

1) Rules: As a drone can receive requests at any state, there
are certain rules that need to be considered:

1) If the order is received while the drone is at the station
- Drone will go to the client

2) If the order is received while the drone is serving
another order - Drone will add the order to the orders
list.

3) If the order is received while the drone is going back
to the station - Drone will go to the client.

4) If the order is received while the drone on route to a
client - Decision required

5) If the drone finished the current order but still the order
set is not empty - Decision required

2) Scales, preference and Utility : In this context, scaling
means allocating values to the received orders to determine
the independent dimensions of different factors. The concept
varies fundamentally depending on the chosen factor that can
be measured. The focus here is on distance and value of each
received order.

Distance Scale (dS): As mentioned earlier, the study area
(i.e., a square) has a known length of L, so the maximum
distance (d,,q,) that a drone can travel to is the diagonal of
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the area (L+/2). So to scale each order based on the proximity
of the drone, we calculate it as shown in (1):

Ar)

dma:v

ds(r) = (1)
where d(r) represents the distance between the drone at its
current location when dS is computed, and the client with
request r.

Value Scale (vS5): Each order has a value ranging from v,,;,,
t0 Upnae. We divide the value of the request © (v(7)) by Vmax
to standardise the value of the current job as in (2), where v
represents the value of the order that has been received:

v§(r) = A1) @
Uma:v
Note that in our simulation, time spent by a drone at the
client’s location for a request r depends on its v(r).
Preference weights (w): Preferences or priorities values
for both distance (wy) and value (w,) are weighted equally
in our simulation study here (though other weights can be
experimented with), where:

wyg +w, =1 3)

Utility-function(UU): We associate each factor with a spe-
cific variable based on a scale function. As the focus of these
experiments is mainly on two factors, we used (1), (2) and (3)
to formulate the utility function as shown in (4).

U(r) = wg-dS(r) + wy-vS(r)) )

3) Strategies: We have conducted a set of experiments to
assess the decision-making process, considering two factors;
distance between the drone and the client and value of the
request. Decisions are made to fulfil the purpose of rule 4 and
5 as discussed in Section III-D1. Five strategies are considered
when deciding which order/request to serve next.

Distance-based(argmin): Clients with a closer proximity
are preferred to be served first. Drone can find the nearest
(location) of a client in the order list before committing to any
request. An order with the shortest distance is always updated
depending on the drone’s location. Using this strategy will
apply (5) for both rules.

argmin,er(d(r)) (5)

Value-based(argmax): Orders with a higher value are
preferred to be served first. Drone queue orders in a descending
order based on their values. Choosing this strategy means that
the drone always apply (6) when it performs a regular check
(i.e on the order list) after each serve or as soon as it receives
a new order.

argmazy,er (v(r)) (6)

Utility-based(U 1): In this strategy, there are two cases to be
considered. First, if an order (or request) is received while the
drone is on the way to serving another order which we call the
current order (r’), then the received order r will be compared
only with 7" in terms of distance and value using the scale

values and preference value from (1), (2) and (3) respectively
as shown in (4). Then, r is served first if U(r) > U(r'),
otherwise 7’ is served. Second, if the drone finished serving
the current order but the order list is still not empty, then let
r’ be assigned to the shortest distance order using (5), and
let r be assigned to the highest value order using (6). The
same applies again as in the first scenario, i.e. we compare
U(r' = argmin.cr(d(r))) and U(r = argmaz,cgr(v(r))).
Either of the scenarios above, the order with the highest U is
served first for rule 4 and 5.

Utility based(U2): Each received order (r) is compared
with each order/request in the order/request list. The com-
parison process has to consider each individual order against
the order that has been received (r) using (4). The order with
the highest U at the time r is received is served next, again
for both situations in rule 4 and 5.

Utility-based(U 3): This strategy is a combination of U1l
and U?2; it uses different action for each rule. If order received
while the drone is flying to a client, the drone uses (U1) to
fulfil rule 4. And as for rule 5 the drone uses (U2) to determine
the next request to serve. The reason for this combination is
that as the drone is flying to a client, this client already has
the order with the highest utility value at the time (call this ')
just before receiving r. Therefore, the drone does not compare
r with all existing orders; it only compares (r) with (') - this
is a simple reduction in computations compared to U2.

E. Results and discussion

The simulations were run with Anylogic software for vari-
ous combinations of drone strategies, and for different request
rates 6. As mentioned previously, the drone can follow many
strategies; only five strategies are tested here. The results of the
experiments are shown in Figures (5 to 8) from the perspec-
tives of orders served; total profit generated, client satisfaction
and time spent in each state of the drone, respectively.

Figure 5 shows that, as expected, the maximum number of
orders are served when the rate of requests is the maximum
(i.e., 0.9), simply because there are more requests (and within
the capacity of the drone). Also, with low-frequency requests,
all strategies have similar outcomes. The utilities (U2 & U3)
and the distance strategies are also highest under this scenarios
compared to lower rates of requests. However, interestingly,
the number of clients served using the value-based strategy
remains relatively constant with an increase in the rate of
requests and orders especially with the scattered distributions.
This is most likely due to the drones being constrained by
serving the high-value clients who might be a distance from
the drone. If the high-value clients are widespread, then the
drone will have to travel more distance to serve those clients,
and that could result in serving the same number of clients
using this strategy even for different rates of requests.

The results are similar on all fronts with varying client
distribution except a slight negative change with the random
distribution. The reason being that the scattered distributions
are very similar but are a distance from the station. This
possibility is more probable in this case, due to the size of
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Fig. 5: Result of total served orders for different request rates.

the served area. However, if the served area is more extensive,
this may have a higher impact on the number of served orders.
Another reason could be that the drone does not have to go
back to the station after serving each request due to the high
rate of requests.

Figure 6 shows similar trends to Figure 5 as the number of
orders served means, proportionally, an increase in the profit
generated, with regards to each strategy.
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However, more orders served for a strategy does not nec-
essarily mean it also generates more profit. For example,
for a scatter distribution with o = 0.9, using (U2) serve
the highest number of clients but also generated the lowest
profit. Moreover, although the number of clients served using
the value-based strategy remains relatively constant with an
increase in the rate of requests and orders, the profit is
comparable to the other strategies.

A few noteworthy differences are that the profit generated
plateaus after the rate of request of 0.7 i.e. the increase in the
profits is not substantial between an « of 0.7 and 0.9. This
could be that even if more orders are served, they are nearer
and not necessarily of higher value. In addition, the distance is
most strongly associated with the profits generated compared
to the utilities and the number of high value orders served. This

might be because the drone does not have to travel a significant
distance to serve a client if there are available nearby orders.
Therefore, if the drone is prioritising clients according to their
proximity to its current location, then there is a high chance
of serving more orders even with low values.

Figure 7 demonstrates the impact of different strategies
on client satisfactions (i.e. satisfied, neutral, unsatisfied and
disappointed) while varying the request rate.
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Fig. 7: Result of client satisfactions for different request rates
and strategies (from a total of 100 clients).

The ratio of disappointed clients to satisfied clients increases
with an increase in the rate of requests issued by clients.
This could be because the clients have to wait longer when
there is a large number of orders processed, and satisfaction
increases with more drones, obviously. Also, the utility-based
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U2 strategy seems best in serving the requests at increased
request rates, while satisfying more clients.

Figure 8 shows the times that the drone spent at each state
e.g., atStation, onRouteToClient, serving and onRouteToSta-
tion. If the drone spent more time at the station, this indicates
that the drone is not fully utilised.
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Fig. 8: Breakdown of time spent by the drone in each state
for different request rates and strategies (the total duration of
a simulation run was 4200 time units).

As the request rate increases, the time a drone spends
at station decreases and vice versa. Also if the drone spent
more time at the onRouteToClient state, this indicates that the
drone was frequently changing target clients while on route
to a client. As expected, the utilities U2 and U3 have the
two highest time spent in the onRouteToClient state, as they

attempted to balance between the value and the distance of
each request, and could change decisions more often to serve
a newer higher utility request while on route to a client -
while on route to a client with the highest value or which is
closest, there is less chance of a new request having higher
value or being even closer. Under all scenarios, the drones
were spending the maximum time serving, and little time at the
station (except for a = 0.5) this indicates that the drones were
running at capacity and there were many orders to service.

IV. CONCLUSION

We have studied the trade-off between maximising revenue
and maximising clients’ satisfaction in the context of drone
services. We have considered some possible drone strategies
and identified common factors that may affect the decision-
making process. A simulation study was done to compare
different drone serving strategies. The client distribution does
not matter significantly. With low-frequency requests, all
strategies have similar outcomes. However, an increase in
requests rate results in increased profit, orders served, but
also higher clients’ waiting times. A distance-based strategy
generates slightly more profit in most situations than other
strategies, whereas a utility-based strategy is the optimal
choice regarding increasing served orders and more satisfied
clients. The utility-based U2 and U3 are the most strategies
associated with frequently changing target clients while on
route to a client. We noted that the strategy that provides
the most satisfied clients (e.g., U2) might not be the one
that maximises profit (e.g., distance). Overall, there are clear
trade-offs between maximising revenue and maximising clients
satisfaction. Future work will involve working with multiple
drones and different drone strategies. Also, we will consider
other factors that may affect the on-drone decision-making
process to increase reliability, efficiency and profitability.
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